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Abstract 
 

New protein-coding genes can evolve from previously non-coding genomic regions through a 

process known as de novo gene emergence. Evidence suggests that this process has likely 

occurred throughout evolution and across the tree of life. Yet, confidently identifying de novo 

emerged genes remains challenging. Ancestral Sequence Reconstruction (ASR) is a promising 

approach for inferring whether a gene has emerged de novo or not, as it can enable us to 

inspect whether a given genomic locus ancestrally harbored protein-coding capacity. 

However, the use of ASR in the context of de novo emergence is still in its infancy and its 

capabilities, limitations, and overall potential are largely unknown. Notably, it is difficult to 

formally evaluate the protein-coding capacity of ancestral sequences, particularly when new 

gene candidates are short. How well-suited is ASR as a tool for the detection and study of de 

novo genes? Here, we address this question by designing an ASR workflow incorporating 

different tools and sets of parameters and by introducing a formal criterion that allows to 

estimate, within a desired level of confidence, when protein-coding capacity originated at a 

particular locus. Applying this workflow on ~2,600 short, annotated budding yeast genes 

(<1,000 nucleotides), we found that ASR robustly predicts an ancient origin for most widely 

conserved genes, which constitute “easy” cases. For less robust cases, we calculated a 

randomization-based empirical P-value estimating whether the observed conservation 

between the extant and ancestral reading frame could be attributed to chance. This formal 

criterion allowed us to pinpoint a branch of origin for most of the less robust cases, identifying 
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33 genes that can unequivocally be considered de novo originated since the split of the 

Saccharomyces genus, including 20 S. cerevisiae-specific genes. We find that the remaining, 

equivocal cases, may be explained by different evolutionary scenarios including rapid 

evolution and multiple losses, as well as a very recent de novo origin. Overall, our findings 

suggest that ASR is a valuable tool to study de novo gene emergence but should be applied 

with caution and awareness of its limitations.            

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 
 

How new genes originate is a fundamental question in biology because genetic novelty 

underlies molecular, phenotypic and organismal novelty1. Understanding how and when 

novel genes arise is therefore essential to understand evolution at every level of biological 

organization. For a long time, new genes and protein functions were believed to result 

exclusively through tinkering and recombination, using pre-existing genes and gene parts as 

raw material2. Consequently, processes such as substitutions, duplication and divergence, 

gene fusion and fission, exon shuffling, or horizontal gene transfer (HGT) have been 

extensively studied and their importance is established. 

Nonetheless, a radically different route to genetic novelty exists: a novel gene can evolve from 

entirely non-coding sequences in a process known as de novo gene emergence3,4. Long 

considered so improbable as to be impossible5, de novo gene emergence has high potential 

to produce an entirely new protein function, since the emerging protein will be free of 

constraints present in pre-existing, already functional sequences. De novo genes have been 

found in every eukaryotic lineage studied so far and can have central, even essential cellular 

functions4. This has led to de novo emergence being increasingly viewed as a universal 

evolutionary mechanism. 

It is challenging to distinguish whether a new gene has emerged de novo or through other 

evolutionary processes. Indeed, rapid sequence divergence beyond recognition following 
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events such as duplications or rearrangements, as well as HGT can also result in a gene 

appearing to be novel or taxonomically restricted6,7. It is thus important to develop robust 

methods for distinguishing between these different evolutionary routes, in order to be able 

to assess the impact of de novo gene emergence and study the characteristics and function of 

de novo genes. 

Evidence for de novo gene emergence can be provided by computational comparative 

genetics approaches8. The strongest kind of evidence is confidently inferring that the genomic 

locus that now harbors a novel gene in a given lineage, did not encode a protein sequence in 

the past. Until recently, the gold standard was to align the novel gene to its orthologous 

regions in multiple outgroup species and demonstrate that these outgroup loci were 

noncoding by identifying specific mutations that enabled the presence of an open reading 

frame (ORF) in the genome of interest. Parsimoniously one can then infer that the ancestral 

state of the positions in question was such that disrupted the ORF currently present in the 

focal lineage. 

However, visually inspecting such alignments does not always result in clear cut conclusions. 

It is especially delicate to draw robust conclusion when the candidate new genes are short 

and when alignments contain frameshifts, and in such tricky cases conclusions are typically 

drawn based on a personal judgement call rather than a formal test. A potentially more 

powerful and accurate approach is to use Ancestral Sequence Reconstruction (ASR). ASR 

allows both estimating whether an ancestral sequence contained an ORF or not as well as 

tracing the mutational transition from noncoding to coding. Thus, the application of ASR to 

the task of de novo gene detection could be a potent tool to gain insights into this evolutionary 

process.  

ASR has mostly been used in the context of protein alignments in order to reconstruct 

ancestral protein sequences from extant ones9. Only a handful of studies have applied ASR to 

de novo genes10–16 thus far, and an in depth assessment of its performance and limitations is 

lacking. Here, we evaluate how reliably existing ASR tools can estimate the emergence date 

of short ORFs annotated in the budding yeast S. cerevisiae’s genome. Using reading frame 

conservation (RFC) between an ORF and its inferred ancestor as a quantitative measure of 

ORF age, we conclude that ASR allows robust evolutionary inference for ancient genes, but 

shall be used with caution to infer recent events of de novo gene emergence.  

 

 

Results 
 

A computational pipeline to reconstruct and conservatively estimate the coding 

capacity of ancestral nucleotide sequences   
 

We assembled nucleotide multiple sequence alignments of all annotated S. cerevisiae ORFs 

shorter than 1000nt (n=2,640, Figure 1A) with their respective orthologous genomic loci in 

closely related Saccharomyces species (see Methods and Figure 1B). These alignments served 

as inputs for ASR using a pipeline we designed to test how robust ASR inferences would be to 
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methodological choices. This pipeline combines three different phylogenetic tools, 

phylogenetic trees built with and without the species topology as a constraint, and two 

different types of input alignments: one based only on the exact region of the S. cerevisiae 

ORF and one based on an extended region (see Methods). The phylogenetic tools are: 

FastML17 which performs both marginal and joint Maximum Likelihood (ML) reconstructions 

of characters and ML reconstruction of indels (hereafter FastML_joint and FastML_marginal), 

PREQUEL from the PHAST18 package, which performs ML reconstruction of characters and 

parsimonious reconstruction of indels and prefers to infer deletions when insertions and 

deletions cannot be distinguished (producing an upward bias on the length of the sequence 

at root) and PRANK19 which uses ML reconstruction of characters and a custom algorithm for 

the inference of insertions and deletions (Figure 1A). 

After running our ASR pipeline on all input alignments, we searched each ancestral sequence 

for the presence of ORFs that could correspond to ancestral versions of the extant S. cerevisiae 

gene. We defined these putative ancestral ORFs in two ways: ATG-STOP hereafter “ATG”, or 

STOP-STOP hereafter “noATG”. The similarity of each ancestral ORF longer than 30nt relative 

to the extant one of S. cerevisiae was scored using the Reading Frame Conservation (RFC) 

measure20,21: (length covered by the ancestral ORF aligned in the S. cerevisiae ORF 

frame)/(length of the S. cerevisiae ORF). An RFC value = 1 means that an ancestral ORF exists 

that is at least as long as the S. cerevisiae ORF and aligns to it in the same frame and without 

frameshifts (see Figure 1C for an example). We inferred whether a S. cerevisiae ORF originated 

de novo since the Saccharomyces common ancestor according to each combination of 

methodological choices implemented in our pipeline, for a range of RFC cutoffs (0.5, 0.6, 0.7, 

0.8). 
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Figure 1. A: Overview of the workflow followed in the present study to generate a set of ASR 

methodological variations. B: Tree topology of the Saccharomyces genus used in our analyses. 

C: An example alignment to illustrate how the Reading Frame Conservation measure is 

calculated. The reading frame (RF) of each sequence and how it changes with the presence of 

gaps, is shown. RFC is calculated by counting non-gap positions where the two frames match 

(marked with blacked dots) and dividing by the length of the reference sequence, which in 

this study is always the S. cerevisiae ORF. 

 

We compared the outputs of ASR with a classification of the input ORFs  into emerging or 

established previously developed by Vakirlis et al. using a combination of sequence and 

selection signatures11. Figure 2 shows the results when using the definition of ORF without 

the need for an ATG start codon (noATG). Results using the alternative definition are highly 

similar and can be found in Supp. Figure 1.  

In agreement with the initial analysis, the vast majority of established ORFs were classified by 

ASR as ancient and the majority of emerging ORFs were classified by ASR as S. cerevisiae - 

specific. The type of initial alignment used as input (ORF only or extended ORF region) had 

minimal impact, with the vast majority of ORFs being predicted to have the same origin. When 

setting an arbitrary RFC cut-off of 0.5, ORFs predicted to be ancient by ASR have initial 

alignments with shorter genetic distance and more gaps, than those predicted to be S. 

cerevisiae - specific (Figure 2). This is consistent with young ORFs evolving faster, which has 
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been reported before22–24, but it can also be explained with faster evolving ancient genes 

whose more “difficult” initial alignments are challenging for ASR.  

ASR methodologies unequivocally inferred 1,355 ORFs to be at least as ancient as the 

Saccharomyces ancestor, with RFC>0.9. Almost all these ORFs (1351/1355) were also 

classified as “established” by Vakirlis et al. Overall, these 1,355 cases can safely be considered 

ancient and we conclude that ASR performs well in such cases (Supp. Table 1).  

 

 

Figure 2. Distributions of branches of origin and input multiple sequence alignment statistics. 

Top: Distributions of branch where the most ancient ancestral ORF has been identified using 

four different RFC cut-offs and eight different ASR methodologies (tools+phylogeny). Bars 

within each node (e.g. “Root”) correspond, from left to right, to RFC cut-off of 0.5, 0.6, 0.7 and 

0.8. Results for ORF-only alignments and “noATG” definition of ORFs are shown. Results for 

extended ORF alignments and ATG can be found in Supp. Figure 1. Middle: Distributions of 

average gap count per sequence in the initial multiple sequence alignment, over the different 

predicted branches of origin (most ancient ancestral ORF, using an RFC cut-off of 0.5). Bottom: 

Same as above, but for the average pair-wise Kimura distance in the input alignment.  
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An empirical P-value allows to confidently select a most likely branch of origin 

for many ORFs 

 
For the remaining 1,275 ORFs, different ASR methodological variations gave at least partly 

conflicting estimates. Two examples of such ORFs and the best RFC scores in ancestral 

sequences predicted by different methodologies can be found in Figure 3A. On the left we 

show a case where, using an RFC cut-off of 0.5, some methodologies would predict a much 

more ancient origin than others. On the right, we show a case where no methodology 

retrieves an ORF with RFC>0.4 in any ancestor, thus using an RFC cut-off of 0.5 would result in 

a coherent classification as species-specific, across ASR methodological variations, but an RFC 

cut-off of 0.3 would not. Relying on an arbitrary RFC cut-off for inferring ORF origination is 

problematic and fickle.  

We thus asked whether one can systematically infer when an ORF has formed, taking into 

account the fact that ORFs can form randomly. To this end, we randomized each entire 

ancestral sequence while keeping its nucleotide composition constant and then logged the 

best RFC-scoring ORF, repeating this procedure 1000 times (see Methods). This produced an 

empirical distribution of values which we then used to assign a P-value on the best RFC-scoring 

ORF of the real ancestral sequence. The most ancient phylogenetic node where a P-value 

<0.01 was recorded was then kept as the most likely branch of origination of this ORF, that is, 

the most ancient branch where the presence of such an ORF is unlikely to be due to chance. 

It is important to stress that, ultimately, this approach may lead to strongly conservative 

estimates because de novo emergence could start from genomic loci which do happen to 

harbor unusually long ORFs, something that is bound to occur given that the genomic space is 

continuously explored throughout evolutionary time. The relationship between the empirical 

P-value and the best RFC ORFs at the root ancestor, which appears to have a sigmoid-like 

shape, can be found in Supp. Figure 2.  

An overview of the predictions of branches of origin of the different methodologies when 

relying on the empirical P-value can be found in Figure 3C and the raw data can be found in 

Supp. Table 2. Note that since results between the ORF-only and extended-ORF alignments 

were highly similar, we only use the ORF-only alignments for this and all downstream analyses. 

When comparing the predictions of the different methodologies, FastML_joint stands out as 

resulting in more species-specific estimates than the rest (380 ORFs or 30% compared to 162 

ORFs or 12.7% on average for the rest). This is because this method has a strong tendency to 

infer deletions when encountering gaps in the alignment, resulting in longer ancestral 

sequences. No other significant bias among methodologies was found. 

We observed that for 574 ORFs, an ancient origin was predicted by all ASR methodologies, 

and we classified these as “High-Confidence” (HC) and ancient (Figure 3C, top group). For 

another 33 HC ORFs, all methodologies agreed on an origin after the split of the genus and so 

we can safely conclude that these have emerged de novo (Figure 3C; HC- de novo). Notably, 

20 of them are S. cerevisiae-specific. Integrating ASR with a systematic RFC p-value therefore 

improved the robustness of evolutionary inferences relative to an arbitrary RFC cutoff. 
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However, the remaining 667 ORFs should be considered “Low-Confidence” (LC) with 

discordant predictions that suggest uncertainty about when they originated, including 508 

where at least one methodology predicted an origin at the root. In Figure 3D we provide a 

condensed view of these findings, allowing to compare the numbers of confident predictions, 

as well as those of more uncertain ones.  We next asked what could explain this uncertainty. 
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Figure 3. A: One example of maximum RFC score for different ancestors, as predicted using 

ancestral sequences from different methodologies (tool+phylogeny+inp. alignment). noATG 

ORF definition shown. Example is gene YER088C-A, a representative case where picking a 

branch of origin is not immediately obvious since when using an arbitrary RFC cut-off (e.g. 0.6) 

some methodologies lead to presence of ORFs in much older nodes than others; for example 
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FastML_marginal+species+ORF would place the origin at Anc3, whereas 

PRANK+species+extORF would lead to a species-specific origin. B: Another example 

(YMR001C-A) where no methodology predicts presence of an ancestral ORF, even with an RFC 

cut-off as low as 0.5, and should thus be considered species-specific. C: Heatmap showing the 

ancestral branches of origin as defined using our empirical P-value cut-off of 0.01, for each of 

the 1,275 ORFs that were not previously predicted to be robustly ancient, using 8 different 

ASR methodologies (ORF-only alignments, noATG ORF definition). Based on the agreement 

among methodologies, we can group them into high-confidence ancient (top group), high-

confidence de novo originated, including S. cerevisiae-specific (second from the top), low-

confidence but potentially ancient since at least one methodology predicts and ancient origin 

(third from the top) and the rest (bottom). D: Number of methodologies agreeing in the 

ancestral branch of origin of each ORF. Same data as in C. 

 

 

Multiple evolutionary scenarios could account for the uncertain origin of low-

confidence ORFs 
 

We compared the properties of HC-ancient ORFs, where all methodologies agreed  that the 

node of origin is the  node of the tree (n=574), with those of LC – potentially ancient ORFs 

where at least one, but less than four methodologies predict an origin at the root (n=297).We 

found that HC ancient ORFs are on average longer and have more similar initial alignments 

which also contain fewer gaps than LC ancient ones (Figure 4A). This supports the status of 

the high-confidence ones as more robustly ancient since they are suggestive of conservation 

of a true protein-coding ORF. LC ORFs have also significantly lower maximum RFC-scores in 

their root reconstructed ancestor (Figure 4A). In other words, either their best reconstructed 

ORFs are much shorter than the extant S. cerevisiae one, or they are long but don’t align well 

on the same frame as the extant S. cerevisiae ORF. Note here that 70 of the HC ORFs have 

relatively low best RFC score (<0.5), yet thanks to our empirical P-value we are able to 

confidently classify them as ancient. Finally, the posterior probabilities (as predicted by 

FastML_marginal) of the root reconstruction are lower both for indels and for individual 

positions (Figure 4A). Thus, LC ORFs should be viewed as much harder cases than HC ones, 

with borderline predictions of their phylogenetic origins. 

While informative regarding the limitations of ASR, these differences between HC and LC 

ancient ORFs does not allow to propose a most likely evolutionary scenario for the origin of 

the LC ORFs. Indeed, we would expect to see the same set of differences if LC ORFs were fast 

evolving ancient ORFs for which only a minority of methods happen to succeed in capturing 

their ancient status, or if they were recently emerged ORFs from regions of the genome where 

the probability of forming an ORF was high, making detection of a long enough in frame ORF 

in one of the reconstructions more likely. 
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Figure 4. Comparison of low-confidence and high-confidence ancient ORFs. A: ORF size, best 

RFC score at root ancestor, number of gaps per sequence in the initial ORF-only MSA, average 

pairwise Kimura distance in the initial ORF-only MSA, average posterior-probability of 

characters at the root ancestor as calculated by FastML_marginal, average posterior 

probability of indels as calculated by FastML_marginal. B: Counts of ORFs per major 

phylostratigraphic origin for HC ancient ORFs, LC ancient ORFs and the rest. Bars are ordered 

from ancient to recent, left to right. For visual purposes, only phylogenetic branches 

corresponding to named taxonomic groups are shown. 
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A relatively independent approach to estimating the timing of origination of a gene is protein-

level phylostratigraphy25. We analyzed protein-level sequence similarity searches against all 

available fungal proteomes (see Methods) and obtained, for each S. cerevisiae ORF, a 

phylostratigraphic node of origin (most recent common ancestor of species with match in the 

fungal tree). In Figure 4B, we show the distribution of phylostratigraphic origins in the HC and 

LC ancient ORFs as well as for the other ORFs analyzed. 

Most of the LC ORFs were S. cerevisiae-specific according to phylostratigraphy (79%). This 

percentage was significantly lower for HC (40%), as expected (Wilcoxon test P-value<2.2*10-

16). However for these HC ORFs our ASR based analyses point to a phylogenetic origin that is 

strikingly older than the one recovered by phylostratigraphy. By contrast, we find a much 

higher percentage among the HC that have an ancient phylostratigraphic origin (38% at Fungi) 

compared to the LC ones (6.4%, Wilcoxon test P-value<2.2*10-16). These trends suggest that 

the HC and LC groups are qualitatively different while providing a validation of the ASR 

approach. Yet the origins of the LC group remain equivocal, because these results are what 

we would expect if they were mostly ancient but fast evolving, perhaps also easily lost genes, 

but it is also what we would expect if most of them were of truly recent origin.  

Discussion 
 

ASR is a promising approach allowing to peek into the evolutionary past of sequences and 

elucidate the process of de novo gene origination. It has the potential to provide important 

novel insights both into the frequency and the evolutionary forces that drive de novo gene 

emergence. Nonetheless, it has been demonstrated that ASR is sensitive to many factors, 

including the methodology of multiple sequence alignment and the phylogeny26,27. In addition 

other biases might come in play when the ancestral sequences are examined for the presence 

of relevant ORFs in the context of de novo emergence. For these reasons, we performed a 

systematic examination and assessment of ASR for the study of de novo gene origination. 

Overall, we find that ASR is well suited to be used as a tool for de novo inference and that the 

variability in the results from the different methodologies is limited. With the notable 

exception of the marginal reconstructions of FastML, the rest of the methodologies were for 

the most part in good agreement as per the node of origin of an ORF relative to random 

expectations. It is possible that, while in the context of ancestral protein sequence 

resurrection slight variations might lead to changes in functionally critical amino acids (e.g. 

that could affect the active site of a resurrected enzyme), the same slight variations might not 

impact the inference of the timing of origination of an ORF in the context of the present study. 

An important point is that while we had one part of a good positive control set in genes with 

widespread presence and protein-level conservation in other species, we lack an 

independently generated “gold standard” set of de novo genes to compare to, but most 

importantly we lack an appropriate negative control. A potential solution to the latter would 

be to establish a gold standard collection of pseudogenes, or if this is not available, generate 

them through evolutionary simulations. These would represent evolution in the opposite 

direction of de novo emergence (gene death vs. gene birth) and they would be valuable as a 

test to our ASR-based workflow. For what percentage of such pseudogenes would we be able 

to accurately reconstruct their ancestral protein-coding status and the timing of their 

pseudogenization? This could be the focus of future work. At the same time, such work could 
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also address the generalizability of the present findings in other lineages, including ones 

experiencing slower or faster evolution. 

We believe that it is always best to start from a conservative place. Our empirical P-value 

approach might in fact be too conservative in considering all in frame ORFs longer than would 

be expected randomly as potential evidence for selection. This is inextricably linked to the 

poorly understood questions of how de novo gene emergence begins, at which point during 

de novo gene evolution a protein is first expressed, and at which point the incipient ORF is 

subjected to selection at the level of its size. If the initial evolutionary “version” of a de novo 

gene has on average the same length as any spurious small ORF on the genome then our 

assumption and the empirical P-value approach would be valid. But if a slightly longer than 

usual small ORF is mostly what de novo emergence starts from, then it would be strongly 

conservative, since such ORFs continuously appear and disappear in the genome throughout 

evolution. One can envision a future approach that incorporates this probability into the 

calculation of a P-value, to perhaps make it more realistic. 

    

 

 

 

 

 

 

 

 

 

 

Materials and Methods 
 

Description of the dataset 
Our initial dataset consisted of 2,816 annotated protein-coding genes of S. cerevisiae that 

were included in the dataset analyzed by Vakirlis et al.11 and were under 1000nt long. The 

orthologous regions for each of these genes in seven Saccharomyces species (S. paradoxus, S. 

mikatae, S. kudriavzevii, S. uvarum, S. jurei, S. arboricola, S. eubayanus) were identified as 

follows: First, genomes were obtained from the following sources: S. paradoxus from 28, S. 

arboricolus from 29, S. jurei from 30 and S. mikatae, S. bayanus var. uvarum, S. eubayanus, and 

S. kudriavzevii from 31 .Alignments were constructed between each S. cerevisiae ORF and its 

homologs in each Saccharomyces relative using synteny information. To identify anchor genes 

for syntenic blocks, BLASTP32 was run for each annotated ORF in S. cerevisiae against each ORF 

in the comparison species. Identified homolog pairs with E-value < 10-7 were selected as 

potential anchors. For each ORF in the S. cerevisiae genome, the upstream anchor G0 and 
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downstream anchor G1 were selected that minimized the sum of the distance between the 

anchors in S. cerevisiae and the distance between the anchors in the comparison species; this 

sum was required to be less than 60 kb. The sequence between and including G0 and G1 were 

then extracted from both the S. cerevisiae genome and the comparison species and a pairwise 

alignment of the syntenic region was generated using MUSCLE v. 3.8.31. Multiple sequence 

alignments of the exact S. cereivisiae gene locus to its orthologous Saccharomyces genomic 

regions were generated with MAFFT33 using default parameters. We removed 176 S. 

cerevisiae genes from the dataset because the orthologous region of S. cerevisiae could only 

be identified in less than 6 species, or it contained >1000 gaps/sequence. For the remaining 

2,640 genes, we also generated an alternative, extended version of the multiple sequence 

alignments by including 500nt flanking the S. cerevisiae ORF downstream and upstream. For 

each S. cerevisiae gene, we collected gene and protein properties from Carvunis et al34. and 

Vakirlis et al11. We also performed protein-level sequence similarity searches for every gene, 

against a protein sequence database containing all fungal proteomes downloaded from NCBI’s 

RefSeq in May 2021 plus the 332 Saccharomycotina proteomes from Shen et al.35 . This search 

was conducted with BLASTp32 using an E-value cut-off of 0.001 and the -max_target_seqs flag 

set to 1000. The results of the similarity searches were processed as in36: For each gene, we 

first obtained the list of all fungal species with a significant similarity match. Phylogenetic age 

of each gene was then calculated as the most recent common ancestor of all species with a 

match. The NCBI Taxonomy common tree was used for this, resulting in classification into the 

following phylogenetic ages: species-specific, genus (Saccharomyces), family 

(saccharomycetaceae), order (saccharomycetales), division (ascomycota) or kingdom (fungi). 

For each gene, we also counted the number of species with match (number of species with 

homologues). 

 

Phylogenetic reconstruction 
Phylogenetic trees were reconstructed using RAxML next generation37 (raxml-ng) with the 

GTR substitution matrix, empirically estimated rates and nucleotide frequencies, 4 categories 

of rates drawn from a GAMMA distribution with maximum likelihood inference of its shape 

parameter using the following command: raxml-ng --seed 12546582  --model GTR+F+G . For 

the species-topology phylogeny we additionally used the species topology as shown in Figure 

1B in newick format with the additional arguments:  --evaluate –tree SACCH_TOP.nwk . The 

resulting phylogenetic tree, in the case of the species-topology, was re-rooted using S. 

eubayanus and S. uvarum (Seub-Suva) as outgroups with the GoTree38 utility to ensure 

downstream consistency. The free topology tree was re-rooted at midpoint using GoTree. For 

use with the ancestral sequence reconstruction tool PREQUEL (see next subsection), a 

phylogenetic model had to be generated using the PHAST18 utility PhyloFit. The trees 

generated by RAxML were provided to PhyloFit together with the initial input MSA. We then 

confirmed that the tree and model fitted with PhyloFit was identical to that of RAxML.  

 

Ancestral Sequence Reconstruction 
ASR was performed with FastML17 using the following command: 

perl FastML_Wrapper.pl --MSA_File "INPUT_ALIGNMENT.fasta" --seqType nuc --Tree 

"INPUT_TREE.nwk" --SubMatrix GTR --OptimizeBL no --indelReconstruction ML –outDir 

“OUTPUT_DIR” 
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ASR was performed with PRANK19 without iterations using the following command: 

prank -d "INPUT_ALIGNMENT.fasta"  -support -showall -keep -F -once -o="OUTPUT_PREFIX"   

-t="INPUT_TREE.nwk" 

ASR was performed PREQUEL from the PHAST18 package using the following command: 

prequel " INPUT_ALIGNMENT.fasta" "INPUT_MODEL.phylofit_corTree.mod" OUTPUT_PREFIX 

, and then once again with the -n argument to obtain the posterior probabilities. 

     

Identification of ORFs in ancestral sequences 
For every ancestral sequence in each variation of ASR, we performed the following: first, we 

identified all ORFs on the forward strand using getorf from EMBOSS39 defined either as ATG-

STOP or STOP-STOP. The coordinates of each ORF on the ancestral sequence were stored. 

Then, a pairwise alignment of the entire ancestral sequence and the S. cerevisiae extant ORF 

was generated using the command “pairwise2.align.globalds(S.cer_sequence, 

Ancestral_sequence._data, subs_mat, -3, -.1, one_alignment_only=True)” from Biopython 

and the coordinates of each ORF were transposed to correspond to the coordinates in the 

pairwise alignment. Subsequently, the Reading Frame Conservation20,21 (RFC) score was 

calculated for each ancestral ORF based on the pairwise alignment defined as: (length covered 

by the ancestral ORF aligned in the S. cerevisiae ORF frame)/(length of the S. cerevisiae ORF). 

For each ancestor of each ASR variation, we kept the ORF with the maximum RFC score. 

To select the phylogenetic branch on which an ORF first appeared, based on a pre-defined RFC 

cut-off, we performed the following: Starting from the root of the phylogenetic tree and 

moving towards the leaves, we selected the first branch where an ancestral ORF existed with 

a maximum RFC higher than the pre-defined cut-off (e.g. 0.6). was selected as the evolutionary 

origin of the ORF. To select the phylogenetic branch on which an ORF first appeared, based 

on an empirical P-value, we performed the following: First, we computed an empirical P-value 

at each ancestral sequence of each ASR variation, by pseudo-randomizing the a given 

ancestral sequence 1000 times using the random package in Python 3 and then for each of 

the 1000 randomizations, ORFs (using the Stop-Stop definition only) were extracted, RFC was 

calculated for all, and the maximum RFC was kept, as described above. This resulted in a set 

of “randomized” 1000 best-RFC values, representing an empirical null model. Based on this 

distribution, we then calculated a P-value for the real maximum RFC score (one for each 

ancestral sequence of each ASR variation) by counting the number of randomized values 

greater than the real one and dividing by 1000.  

 

Statistical analyses 
All statistics were done in R v3.6.2. Plots were generated using ggplot240. All statistical 

details including the type of statistical test performed and exact value of n (n represents 

either number of genomes or number of genes) can be found in the Results and figure 

legends. Boxplots show median (horizontal line inside the box), first and third quartiles of 

data (lower and upper hinges) and values no further or lower than 1.5*distance between the 

first and third quartiles (upper and lower whisker). No methods were used to determine 

whether the data met assumptions of the statistical approaches. 
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Data availability 
The study uses publicly available data. Data source tables not included as supplementary 

information, as well as some scripts are available (will be once the work is accepted for 

publication) at https://github.com/Nikos22/ 
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Supplementary Figures 
 

 

 

Supplementary Figure 1: Distributions of branch where the most ancient ancestral ORF has 

been identified using four different RFC cut-offs and eight different ASR methodologies 

(tools+phylogeny). Bars within each node (e.g. “Root”) correspond, from left to right, to RFC 

cut-off of 0.5, 0.6, 0.7 and 0.8. Results for extended alignments using both “noATG” and 

“ATG” definition of ORFs are shown. 
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Supplementary Figure 2: Relationship of the maximum (best) RFC score in the root ancestor 

and the associated empirical P-value for different methodologies, using the ORF-only 

alignments and the “noATG” ORF definition.  
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Supplementary Tables 
 

Supplementary Table 1. Gene names and associated data for 1,355 robustly ancient ORFs.  

Supplementary Table 2. Best RFC and associated P-values for every ancestor, for the 

different methodological variations for 1,275 ORFs.  
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