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Abstract

Background: 

Recent studies uncovered pervasive transcription and translation of thousands of noncanonical 

open reading frames (nORFs) outside of annotated genes. The contribution of nORFs to cellular

phenotypes is difficult to infer using conventional approaches because nORFs tend to be short, 

of recent de novo origins, and lowly expressed. Here we develop a dedicated coexpression 

analysis framework that accounts for low expression to investigate the transcriptional regulation,

evolution, and potential cellular roles of nORFs in Saccharomyces cerevisiae.

Results:

Our results reveal that nORFs tend to be preferentially coexpressed with genes involved in 

cellular transport or homeostasis but rarely with genes involved in RNA processing. 

Mechanistically, we discover that young de novo nORFs located downstream of conserved 

genes tend to leverage their neighbors’ promoters through transcription readthrough, resulting in

high coexpression and high expression levels. Transcriptional piggybacking also influences the 

coexpression profiles of young de novo nORFs located upstream of genes, but to a lesser 

extent and without detectable impact on expression levels. Transcriptional piggybacking 

influences, but does not determine, the transcription profiles of de novo nORFs emerging 

nearby genes. About 40% of nORFs are not strongly coexpressed with any gene but are 

transcriptionally regulated nonetheless and tend to form entirely new transcription modules. We 

offer a web browser interface (http  s://carvunislab.csb.pitt.edu/shiny/coexpression/  ) to efficiently 

query, visualize and download our coexpression inferences.

Conclusions:
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Our results suggest that nORF transcription is highly regulated. Our coexpression dataset 

serves as an unprecedented resource for unraveling how nORFs integrate into cellular 

networks, contribute to cellular phenotypes, and evolve.

Keywords:

Coexpression networks, de novo gene birth, noncanonical ORFs, translatome, smORFs, 

transcriptional regulation

Background

Eukaryotic genomes encompass thousands of open reading frames (ORFs). The vast majority 

are so-called “noncanonical” ORFs (nORFs) excluded from genome annotations because of 

their short length, lack of evolutionary conservation, and perceived irrelevance to cellular 

physiology [1–3]. The development of RNA sequencing (RNA-seq) [4] and ribosome profiling 

[5,6] has revealed genome-wide transcription and translation of nORFs across species ranging 

from yeast to humans [6–14]. Recent studies have characterized individual nORFs that form 

stable peptides and impact phenotypes, including cell growth [10,13,15], cell cycle regulation 

[16], muscle physiology [17–19], and immunity [20–22]. Unraveling the cellular, physiological 

and evolutionary implications of nORFs has become an active area of research [14,23]. 

Many nORFs have evolved de novo from previously noncoding regions [24–26]. Thus, the study

of nORFs and de novo gene birth as evolutionary innovation carries a synergistic overlap where

findings in one area could improve our understanding of the other. For instance, Sandmann et 

al. measured physical protein interactions for hundreds of peptides translated from nORFs and 

proposed that short linear motifs present in young de novo nORFs could mediate how nORFs 

impact essential cellular processes [26]. Other studies observed a gradual integration of 
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evolutionary young ORFs into cellular networks and showed they could gain essential roles [27–

29]. These studies support an evolutionary model whereby pervasive expression of nORFs 

generates the raw material for de novo gene birth [24,25].

The biological interpretation of nORF expression is complex. Some studies suggest that the 

transcription or translation of nORFs could be attributed to expression noise [30–32], whereby 

non-specific binding of RNA polymerases and ribosomes to DNA and RNA might cause 

promiscuous transcription or translation, respectively. How do nORFs become expressed in the 

first place? There are multiple hypotheses on how de novo ORFs gain the ability to become 

transcriptionally regulated [33]. One possibility is the emergence of novel regulatory regions 

along with or following the emergence of an ORF (ORF-first), as was shown for specific de novo

ORFs in Drosophila melanogaster [34], codfish [35], human [36,37] and chimpanzee [36]. 

Alternatively, ORFs may emerge on actively transcribed loci such as near enhancers [38] or on 

long noncoding RNAs [39], as was shown for de novo ORFs in primates [40] and for de novo 

ORFs upstream or downstream of transcripts containing genes [37] (transcription-first) [41–43]. 

Transcription has a ripple effect causing coordinated activation of nearby genes [44,45]. Thus, 

de novo ORFs that emerge near established genes or regulatory regions may acquire 

transcriptional regulation by ‘piggybacking’ [45] on the pre-existing regulatory context [41,46]. 

This piggybacking could predispose de novo ORFs to be involved in similar cellular processes 

as their neighbors, which in turn would help with characterization. To date, the fraction of 

nORFs that are transcriptionally regulated and contribute to cellular phenotypes is unknown for 

any species. 

An obstacle to studying nORF expression at scale is their detection, as nORF expression levels 

are typically low and reliant on specific conditions [24,36]. Recent studies demonstrated that the
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integration of omics data [14,47–49] could effectively address detection issues. For example, 

Wacholder et al. [14] recently discovered around 19,000 translated nORFs in Saccharomyces 

cerevisiae by massive integration of ribosome profiling data. This figure is three times larger 

than the number of canonical ORFs (cORFs) annotated in the yeast genome. These translated 

nORFs have the potential to generate peptides that affect cellular phenotypes but are almost 

entirely uncharacterized. 

Coexpression is a well-established approach for studying transcriptional regulation through the 

massive integration of RNA-seq data. Coexpression refers to the similarity between 

transcriptional profiles of ORF pairs across numerous samples. Coexpression has been used 

successfully to identify new gene functions [50,51], disease-related genes [22,52,53] and for 

studying the conservation of the regulatory machinery [51,54] or gene modules [55] between 

species. Based on the assumption that genes involved in similar pathways have correlated 

expression patterns, coexpression can reveal relationships between genes and other 

transcribed genetic elements [56,57]. Most coexpression studies have focused on cORFs, but 

the abundance of publicly available RNA-seq data represents a tractable avenue to interrogate 

the transcriptional regulation of thousands of nORFs at once using coexpression approaches 

[47,58–61]. Indeed, RNA-seq is probe-agnostic and annotation-agnostic, thereby enabling the 

reuse of existing data to explore these novel ORFs. However, low expression levels can distort 

coexpression inferences due to statistical biases [62,63]. A coexpression analysis of translated 

nORFs that addresses the statistical issues arising from low expression is still lacking for any 

species.

Here, we developed a dedicated statistical approach that accounts for low expression levels 

when inferring coexpression relationships between ORFs. We applied this approach to the 

recently identified 19,000 translated nORFs in S. cerevisiae [14] and built the first high-quality 
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coexpression network spanning the canonical and noncanonical translatome of any species. 

Coexpression relationships suggest that the majority of nORFs are transcriptionally regulated. 

While many nORFs form entirely new noncanonical transcription modules, approximately half 

are transcriptionally associated with genes involved in cellular homeostasis and transport. We 

show that de novo ORFs that piggyback onto their neighbors’ transcription tend to have higher 

expression and tend to be highly coexpressed with their neighbors. We provide a web 

application to allow researchers to easily access this dataset to investigate the coexpression 

relationships and potential cellular roles for thousands of ORFs. 
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Results

High-quality coexpression inferences show transcriptional and 

regulatory relationships between nORFs and cORFs

Figure 1: Overview of coexpression inference framework and properties of the dataset

7

13

119

120

121

122

123

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


A) Workflow: 3,916 samples were analyzed to create an expression matrix for 11,630 ORFs, 

including 5,803 cORFs and 5,827 nORFs; center log ratio transformed (clr) expression values 

were used to calculate the coexpression matrix using proportionality metric, ρ, followed by 

normalization to correct for expression bias. The coexpression matrix was thresholded using ρ >

0.888 to create a coexpression network (top 0.2% of all pairs). B) Distribution of the number of 

ORFs binned based on their median expression values (transcript per million - TPM) and the 

number of samples the ORFs were detected in with at least 5 raw counts. C) Coexpressed 

cORF pairs (ρ > 0.888) are more likely to encode proteins that form complexes than non-

coexpressed cORF pairs (Fisher’s exact test p < 2.2e-16; error bars: standard error of the 

proportion); using annotated protein complexes from ref. [64]. D) Coexpressed ORF pairs (ρ > 

0.888) are more likely to have their promoters bound by a common transcription factor (TF) than

non-coexpressed ORF pairs (Fisher’s exact test p < 2.2e-16; error bars: standard error of the 

proportion); genome-wide TF binding profiles from ref. [65] and transcription start sites (TSS) 

from ref. [66] were analyzed to define promoter binding (see Methods). E) Hierarchical 

clustering of the coexpression matrix reveals functional enrichments for most clusters that 

contain at least 5 cORFs; functional enrichments estimated by gene ontology (GO) enrichment 

analysis at false discovery rate (FDR) < 0.05 using Fisher’s exact test.

To infer coexpression at the translatome scale in S. cerevisiae, we considered all cORFs 

annotated as “verified”, “uncharacterized”, or “transposable element” in the Saccharomyces 

Genome Database (SGD) [67], as well as all nORFs, ORFs that were either unannotated or 

annotated as “dubious” and “pseudogene”, with evidence of translation according to Wacholder 

et al. [14]. To maximize detection of transcripts containing nORFs, we curated and integrated 

3,916 publicly available RNA-seq samples from 174 studies (Figure 1A, Supplementary Data 1).

Many nORFs were not detected in most of the samples we collected, creating a very sparse 

dataset (Figure 1B). The issue of sparsity has been widely studied in the context of single cell 
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RNA-seq (scRNA-seq). A recent study looking at multiple measures of association for 

constructing coexpression networks from scRNA-seq showed that proportionality methods 

coupled with center log ratio (clr) transformation consistently outperformed other measures of 

coexpression in a variety of tasks including identification of disease-related genes and protein-

protein network overlap analysis [68]. Thus, we used clr to transform the raw read counts and 

quantified coexpression relationships using the proportionality metric, ρ [69]. 

We further addressed the issue of sparsity with two sample thresholding approaches. First, any 

observation with a raw count below five was discarded, such that when calculating ρ only the 

samples expressing both ORFs with at least five counts were considered. Second, we 

empirically determined that a minimum of 400 samples were required to obtain reliable 

coexpression values by assessing the effect of sample counts on the stability of ρ values 

(Supplementary Figure 1). These steps resulted in an 11,630 by 11,630 coexpression matrix 

encompassing 5,803 cORFs and 5,827 nORFs (ORF list in Supplementary Data 2).

The combined use of clr, ρ, and sample thresholding accounted for statistical issues in 

estimating coexpression deriving from sparsity, but the large difference in RNA expression 

levels between cORFs and nORFs posed yet another challenge. Indeed, Wang et al. showed 

that the distribution of coexpression values is biased by expression level due to statistical 

artifacts [62]. We observed this artifactual bias in our dataset (Supplementary Figure 2A) and 

corrected for it using spatial quantile normalization (SpQN) as recommended by Wang et al. [62]

(Supplementary Figure 2B). This resulted in a normalized coexpression matrix (Supplementary 

Data 3) with ρ values centered around 0.476.

We then created a network representation of the coexpression matrix by considering only the 

top 0.2% of ρ values between all ORF pairs (ρ > 0.888). This threshold was chosen to include 
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90% of cORFs (Supplementary Figure 3). Altogether, our dedicated analysis framework (Figure 

1A) inferred 124,382 strong (ρ > 0.888) coexpression relationships between 9,303 ORFs, 

encompassing 4,112 nORFs and 5,191 cORFs. 

To assess whether our coexpression network captures meaningful biological and regulatory 

relationships, we examined its overlap with orthogonal datasets. Using a curated [64] protein 

complex dataset for cORFs, we found that coexpressed cORF pairs are significantly more likely 

to encode proteins that form a protein complex together compared to non-coexpressed pairs 

(Odds ratio = 10.8 Fisher’s exact test p < 2.2e-16; Figure 1C). Using a previously published [65] 

genome-wide chromatin immunoprecipitation with exonuclease digestion (ChIP-exo) dataset 

containing DNA-binding information for 73 sequence-specific transcription factors (TFs) and 

using transcript isoform sequencing (TIF-seq) [66] data to determine transcription start sites 

(TSSs) and promoter regions, we observed that coexpressed ORF pairs were more likely to 

have their promoters bound by a common TF than non-coexpressed ORF pairs, whether the 

pairs consist of nORFs or cORFs (canonical-canonical pairs: Odds ratio = 3.84, canonical-

noncanonical pairs: Odds ratio = 2.55, noncanonical-noncanonical pairs: Odds ratio = 3.22, 

Fisher’s exact test p < 2.2e-16 for all three comparisons; Figure 1D). Enrichments were robust 

to different coexpression cutoffs (Supplementary Figure 4-5). Using the WGCNA [70] method to 

cluster the coexpression matrix, we found that more than half of the clusters identified contained

functionally related ORFs (gene ontology (GO) biological process enrichments at Benjamini-

Hochberg (BH) adjusted false discovery rate (FDR) < 0.05; Figure 1E; Supplementary Figure 6).

These analyses demonstrate the high quality of our coexpression network and confirm that it 

captures meaningful biological and regulatory relationships for both cORFs and nORFs.

Conventional approaches for coexpression analysis include using transcript per million (TPM) or

reads per kilobase per million (RPKM) normalization, batch correction by removing top principal 
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components, and Pearson’s correlation as the similarity metric [71,56,72]. Compared to these 

approaches, our framework increased the proportion of coexpressed ORF pairs whose 

promoters are bound by a common TF specifically for pairs containing nORFs (Supplementary 

Figure 7), and yielded coexpression networks encompassing the largest number of nORFs at 

most thresholds (Supplementary Figure 8). Hence our dedicated analysis framework therefore 

outperforms conventional coexpression approaches for the study of nORFs. We offer an R 

Shiny [73] interface (https://carvunislab.csb.pitt.edu/shiny/coexpression/) to efficiently query, 

visualize and download the coexpression data we generated. To our knowledge, this is the most

comprehensive coexpression dataset focusing on empirically translated elements, both 

annotated and unannotated, for any species to date.
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nORFs tend to be located at the periphery of the coexpression 

network and form new noncanonical transcription modules

Figure 2 Topological properties of the coexpression network
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A) Visualization for canonical-only and full coexpression networks using spring embedded graph

layout [74]. The full network contains more cORFs than the canonical-only network since 

addition of nORFs also results in addition of many cORFs that are only connected to an nORF. 

B) nORFs have fewer coexpression partners (degree in full network) than cORFs (Mann-

Whitney U-test p < 2.2e-16). C) Most cORFs are coexpressed with at least one nORF. D) Only 

59% of nORFs are coexpressed with at least one cORFs and this is less than expected by 

chance, on average, 89% of nORFs are coexpressed with a cORF across 1,000 randomized 

networks generated in a degree-preserving fashion by swapping edges of noncanonical nodes 

(Fisher’s exact test p < 2.2e-16; error bar: standard error of the mean proportion across 

randomized networks). E) Addition of nORFs to the canonical-only network results in the full 

network being less compact, whereas the opposite is expected by chance, shown by the 

decrease in diameters for the 1,000 randomized networks. F) Addition of nORFs to the 

canonical-only network decreases local clustering in the full network, however this is to a lesser 

extent than expected by chance as shown by the distribution for the 1,000 randomized 

networks. G) Most clusters in the coexpression matrix encompass either primarily nORFs or 

primarily cORFs (n= 69 clusters, green represents nORF majority clusters, purple represents 

cORF majority clusters). 

Conventional analyses of coexpression networks have been restricted to cORFs. Our full 

coexpression network contains twice the number of ORFs and three times the number of strong 

(ρ > 0.888) coexpression relationships compared to the canonical-only network (Figure 2A). We 

sought to compare the network properties of the canonical-only and full networks. On average, 

nORFs have fewer coexpressed partners (degree) than cORFs, suggesting that nORFs have 

distinct transcriptional profiles (Cliff’s Delta d = -0.29, Mann-Whitney U-test p < 2.2e-16; Figure 

2B). We found that 91% of cORFs are coexpressed with at least one nORF (n = 4,726; Figure 

2C), whereas only 59% of nORFs are coexpressed with at least one cORF. In contrast, we 
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would have expected an average of 89% of nORFs to be coexpressed with a cORF according 

to degree preserving simulations of 1,000 randomized networks where edges from nORFs were

shuffled (Odds ratio = 0.174, Fisher’s exact test p < 2.2e-16; Figure 2D, Supplementary Figure 

9). This suggests that, while most nORFs are integrated in the full coexpression network, they 

also have distinct expression profiles that differ markedly from those of all cORFs and are more 

similar to those of other nORFs. 

To investigate how these seemingly conflicting attributes impact the organization of the 

coexpression network, we analyzed two global network properties: diameter, which is the 

longest shortest path between any two ORFs; and transitivity, which is the tendency for ORFs 

that are coexpressed with a common neighbor to also be coexpressed with each other. The 

incorporation of nORFs in the full network led to a larger diameter relative to the canonical-only 

network (Figure 2E). This is in sharp contrast with the null expectation, set by 1,000 degree-

preserving simulations, whereby random incorporation of nORFs decreases network diameter. 

The full coexpression network is thus much less compact than expected by chance, suggesting 

that nORFs tend to be located at the periphery of the network. Network transitivity decreased 

with the incorporation of nORFs compared to the canonical-only network, but to a lesser extent 

than expected by chance (Figure 2F). This suggests that despite their low degree and 

peripheral locations, the connections formed by nORFs are structured and may form 

noncanonical clusters. 

To investigate this hypothesis, we inspected the ratio of nORFs and cORFs among the cluster 

assignments from WGCNA hierarchical clustering of the full coexpression matrix 

(Supplementary Figure 6). Strikingly, we observed a bimodal distribution of clusters, with 

approximately half of the clusters consisting mostly of nORFs and the other half containing 

mostly cORFs (Figure 2G). We conclude that nORFs exhibit a unique and non-random 
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organization within the coexpression network, simultaneously connecting to all cORFs while 

also forming entirely new noncanonical transcription modules.
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Coexpression profiles reveal most nORFs are transcriptionally 

associated with genes involved in cellular transport and 

homeostasis
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Figure 3 Biological processes associated with nORF transcriptional regulation

A-B) Biological processes that are more (A) (Odds ratio > 2, n = 16 terms) or less (B) (Odds 

ratio < 0.5, n = 23 terms) transcriptionally associated with nORFs than cORFs (y-axis ordered 

by nORF enrichment proportion from highest to lowest, BH adjusted FDR < 0.001 for all terms, 

Fisher’s exact test, GO term enrichments were detected using gene set enrichment analyses 

(GSEA), error bars: standard error of the proportion). C) nORFs that are highly coexpressed 

with genes involved in transport are more likely to have predicted transmembrane (TM) domains

as determined by TMHMM [75] compared to nORFs that are not (Odds ratio = 1.6, Fisher’s 

exact test p = 1.3e-4; error bars: standard error of the proportion). D) nORFs and cORFs that 

are Sfp1 or Hsf1 targets are more likely to be downregulated when Sfp1 or Hsf1 are deleted 

compared to ORFs that are not targets (Sfp1: cORFs: p < 2.2e-16; nORFs: p = 2.8e-9; Hsf1: 

cORFs: p <2.2e-16; nORFs: p = 9.9e-13; Fisher’s exact test, error bars: 95% confidence interval

of the odds ratio; dashed line shows odds ratio of 1; RNA abundance data from SRA accession 

SRP159150 and SRP437124 [76] respectively). E) nORFs that are regulated by TFs are more 

likely to be coexpressed with genes involved in processes related to known functions of that TF.

To determine whether nORFs are transcriptionally associated with specific cellular processes, 

we performed gene set enrichment analyses [77] (GSEA) on their coexpression partners. GSEA

takes an ordered list of genes, in this case sorted by coexpression level, and seeks to find if the 

higher ranked genes are preferentially annotated with specific GO terms. For each cORF and 

nORF, we ran GSEA to detect if their highly coexpressed partners were preferentially 

associated with any GO terms (Supplementary Figure 10). Almost all ORFs (99.9%), whether 

cORF or nORF, had at least one significant GO term associated with their coexpression 

partners at BH adjusted FDR < 0.01, suggesting that nORFs are engaged in coherent 

transcriptional programs. We then calculated, for each GO term, the number of cORFs and 
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nORFs with GSEA enrichments in this term (Supplementary Data 4). These analyses identified 

specific GO terms that were significantly more (16 terms, BH adjusted FDR < 0.001, Odds ratio 

> 2, Fisher’s exact test; Figure 3A, Supplementary Data 5) or less (23 terms, BH adjusted FDR 

< 0.001, Odds ratio < 2, Fisher’s exact test; Figure 3B, Supplementary Data 5) prevalent among

the coexpression partners of nORFs relative to those of cORFs. Most of the GO terms that were

significantly enriched among the coexpression partners of nORFs were related to cellular 

homeostasis and transport (Figure 3A) while most of the GO terms significantly depleted among

the coexpression partners of nORFs were related to DNA, RNA, and protein processing (Figure 

3B). Running the same GSEA pipeline with Kyoto Encyclopedia of Genes and Genomes 

(KEGG) [78] annotations yielded consistent results (Supplementary Figure 11, Supplementary 

Data 6-7). Half of nORFs were coexpressed with genes involved in homeostasis (GO:0042592, 

53%), monoatomic ion transport (GO:0006811, 49%) and transmembrane transport 

(GO:0055085, 47%). The nORFs transcriptionally associated with the parent term ‘transport’ (n 

= 2,718, GO:0006810, GSEA BH adjusted FDR < 0.01) were 1.6 times more likely to contain a 

predicted transmembrane domain than other nORFs (p = 1.3e-4, Fisher’s exact test; Figure 3C),

in line with potential transport-related activities. These findings reveal a strong and previously 

unsuspected transcriptional association between nORFs, and cellular processes related to 

homeostasis and transport.

Hsf1 and Sfp1 nORF targets are part of protein folding and 

ribosome biogenesis transcriptional programs, respectively

Overall, our analyses relating coexpression to TF binding (Figure 1D) and functional 

enrichments (Figure 3A-B) suggest that nORF expression is regulated rather than simply the 

consequence of transcriptional noise. To further investigate this hypothesis, we sought to 

identify regulatory relationships between specific TFs and nORFs. We reasoned that if nORFs 
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are regulated by TFs in similar ways as cORFs, then genetic knockout of the TFs that regulate 

them should impact their expression levels as it does for cORFs [79]. We focused on two 

transcriptional activators for which both ChIP-exo [65] and knockout RNA-seq data [76] were 

publicly available: Sfp1, which regulates ribosome biogenesis [80] and Hsf1, which regulates 

heat shock and protein folding responses [81].

For both cORFs and nORFs, knockout of Sfp1 or Hsf1 was more likely to trigger a significant 

decrease in expression when the ORF's promoter was bound by the respective TF according to 

ChIP-exo evidence (Figure 3D). The statistical association between TF binding and knockout-

induced downregulation was as strong for nORFs as it was for cORFs, consistent with nORFs 

having similar mechanisms of transcriptional activation (Sfp1: cORFs Odds ratio = 11.1, p < 

2.2e-16; nORFs Odds ratio = 21.8, p = 2.8e-9, Fisher’s exact test; Hsf1: cORFs Odds ratio = 

12.7, p < 2.2e-16; nORFs Odds ratio = 12.1, p = 9.9e-13, Fisher’s exact test). Therefore, the 

nORFs whose promoters are bound by these TFs, and whose expression levels decrease upon 

deletion of these TFs, are likely genuine regulatory targets of these TFs. By this stringent 

definition, our analyses identified 9 nORF targets of Sfp1 (and 34 cORF targets) and 19 nORF 

targets of Hsf1 (and 39 cORF targets). The coexpression profiles of these Sfp1 and Hsf1 nORF 

targets were preferentially associated with genes involved in processes directly related to the 

known functions of Sfp1 and Hsf1 (Supplementary Data 8). For example, the coexpression 

profiles of 9 Sfp1 nORF targets revealed preferential associations with genes involved in 

‘ribosomal large subunit biogenesis’ and 7 Sfp1 nORF targets involved in ‘regulation of 

translation’ according to our GSEA pipeline (Fisher’s exact test, BH adjusted p-value < 6.7e-4 

for both terms). Similarly, 13 Hsf1 nORF targets were preferentially associated with genes 

involved in ‘Protein Folding’ (Fisher’s exact test, BH adjusted p-value = 5.7e-9). These results 
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show that nORF expression can be actively regulated by TFs as part of coherent transcriptional 

programs (Figure 3E).

de novo ORF expression and regulation are shaped by genomic 

location
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Figure 4 Expression, coexpression and biological processes similarity of de novo ORFs 

with respect to genomic orientations

A) Pipeline used to reclassify ORFs as conserved or de novo. cORFs were considered for both 

conserved and de novo classification while nORFs were only considered for de novo 

classification. Conserved ORFs were determined by either detection of homology outside of 

Saccharomyces or reading frame conservation within Saccharomyces (top). De novo ORFs 

were determined by evidence of translation, lack of homology outside of Saccharomyces as well

as lack of a homologous ORF in the two most distant Saccharomyces branches (bottom). B) 

Counts of cORFs and nORFs that emerged de novo. C) Genomic orientations of de novo ORFs 

that cannot transcriptionally piggyback off neighboring conserved ORF (cannot share promoter 

with neighbor, pink shading) or can transcriptionally piggyback off neighboring conserved ORF 

(possible to share promoter with neighbor, green shading). D) Counts of de novo ORFs that are 

within 500 bp of a conserved ORF in different genomic orientations; ORFs further than 500bp 

are classified as independent. E) De novo ORFs in orientations that can piggyback have higher 

RNA expression levels than de novo ORFs in orientations that cannot piggyback (Cliff’s Delta d 

= 0.4). Only de novo ORFs in a single orientation are considered (dashed box in panel D). 

Dashed line represents the median expression of independent de novo ORFs. F) de novo ORFs

in orientations that can piggyback have higher coexpression with neighboring conserved ORFs 

compared to de novo ORFs in orientations that cannot piggyback (Cliff’s Delta d = 0.43). 

Dashed line represents median coexpression of de novo-conserved ORF pairs on separate 

chromosomes. G) de novo ORFs in orientations that can piggyback are more likely to be 

transcriptionally associated with genes involved in the same biological processes as their 

neighboring conserved ORFs than de novo ORFs in orientations that cannot piggyback (Cliff’s 

Delta d = 0.31). Dashed line represents median functional enrichment similarities of de novo-

conserved ORF pairs on separate chromosomes. (For panels E-F-G: Mann-Whitney U-test, ****:

p < 2.2e-16). 
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Previous literature has shown that many nORFs arise de novo from previously noncoding 

regions [24,26]. We wanted to investigate how these evolutionarily novel ORFs acquire 

expression and whether their locus of emergence influences this acquisition. To define which 

ORFs were of recent de novo evolutionary origins, we developed a multistep pipeline combining

sequence similarity searches and syntenic alignments (Figure 4A). cORFs were considered 

conserved if they had homologues detectable by sequence similarity searches with BLAST in 

budding yeasts outside of the Saccharomyces genus or if their open reading frames were 

maintained within the Saccharomyces genus [14]. cORFs and nORFs were considered de novo 

if they lacked homologues detectable by sequence similarity outside of the Saccharomyces 

genus and if less than 60% of syntenic orthologous nucleotides in the two most distant 

Saccharomyces branches were in the same reading frame as in S. cerevisiae. These criteria 

aimed to identify the youngest de novo ORFs. Overall, we identified 5,624 conserved cORFs 

and 2,756 de novo ORFs including 77 de novo cORFs and 2,679 de novo nORFs (Figure 4B). 

In general, the coexpression patterns of de novo ORFs (Supplementary Figure 12) were similar 

to those of nORFs (Figure 3A-B). 

We hypothesized that the locus where de novo ORFs arise may influence their expression 

profiles through “piggybacking” off their neighboring conserved ORFs’ pre-existing regulatory 

environment. To investigate this hypothesis, we categorized de novo ORFs based on their 

positioning relative to neighboring conserved ORFs. The de novo ORFs further than 500 bp 

from all conserved ORFs were classified as independent. The remaining de novo ORFs were 

classified as either upstream or downstream on the same strand (up same or down same), 

upstream or downstream on the opposite strand (up opposite or down opposite), or as 

overlapping on the opposite strand (anti-sense overlap) based on their orientation to the nearest

conserved ORF (Figure 4C-D). We categorized the orientations as being able to piggyback or 
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unable to piggyback based on their potential of sharing a promoter with neighboring conserved 

ORFs, with down opposite and antisense overlap as orientations that cannot piggyback and up 

opposite, up same, and down same as orientations that can piggyback (Figure 4C). The 

piggybacking hypothesis predicts that de novo ORFs that arise in orientations that can 

piggyback would be positively influenced by the regulatory environment provided by the 

promoters of neighboring conserved ORFs, resulting in similar transcription profiles as their 

neighbors and increased expression relative to de novo ORFs that do not benefit from a pre-

existing regulatory environment. 

We considered three metrics to assess piggybacking: RNA expression level, measured as 

median TPM over all the samples analyzed, coexpression with neighboring conserved ORF and

biological process similarity with neighboring conserved ORF. To calculate biological process 

similarity between two ORFs, we used significant GO terms at FDR < 0.01 determined by 

coexpression GSEA for each ORF (Supplementary Figure 10) and calculated the similarity 

between these two sets of GO terms using the relevance method [82]. If two ORFs are enriched

in the same specialized terms, their relevance metric would be higher than if they are enriched 

in different terms or in the same generic terms. We found that de novo ORFs in orientations that

can piggyback tend to have higher expression (focusing only on ORFs that could be assigned a 

single orientation, dashed box in Figure 4D, Cliff’s Delta d = 0.4; Figure 4E), higher 

coexpression with their neighbor (Cliff’s Delta d = 0.43; Figure 4F), and higher biological 

process similarity (Cliff’s Delta d = 0.31; Figure 4G), compared to ORFs in orientations that 

cannot piggyback (p < 2.2e-16 Mann-Whitney U-test for all). Thus, all three metrics supported 

the piggybacking hypothesis.

Closer examination revealed a more complex situation. First, the immediate neighbors of de 

novo ORFs in orientations that can piggyback were rarely among their strongest coexpression 
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partners (only found in the top 10 coexpressed partners for 15% of down same, 4.5% of up 

same, 3% of up opposite ORFs). Therefore, emergence nearby a conserved ORF in a 

piggybacking orientation influences, but does not fully determine, the transcription profiles of de 

novo ORFs. Transcriptional regulation beyond that provided by the pre-existing regulatory 

environment may exist. Second, while ORFs in all three orientations that can piggyback 

displayed increased coexpression and biological process similarity with their neighbors relative 

to background expectations (Supplementary Figure 13A-B), only down same de novo ORFs 

displayed increased RNA expression levels (Supplementary Figure 13C). The expression levels

of up same de novo ORFs were statistically indistinguishable from independent de novo ORFs, 

while those of up opposite de novo ORFs were significantly lower than those of independent de 

novo ORFs (Supplementary Figure 13C). Down same de novo ORFs also showed stronger 

coexpression and biological process similarity with their conserved neighbors than up same and

up opposite de novo ORFs (Supplementary figure 13A-B). Therefore, the transcription of down 

same de novo ORFs appeared most susceptible to piggybacking.
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Figure 5 Effects of promoter sharing on expression, coexpression and biological process

similarities of de novo ORFs

A) De novo ORFs that share a promoter with neighboring conserved ORFs, as determined by 

TIF-seq transcript boundaries, have significantly higher expression levels than de novo ORFs 

that do not. Considering only ORFs in a single orientation. Dashed line represents the median 

expression of independent de novo ORFs. B) De novo ORFs that share a promoter with 

neighboring conserved ORFs have higher coexpression with their neighbors than de novo 

ORFs that do not share a promoter. Dashed line represents median coexpression of de novo-

conserved ORF pairs on separate chromosomes. C) De novo ORFs that share a promoter have

more similar functional enrichments with neighboring conserved ORFs than de novo ORFs that 

do not share a promoter. Dashed line represents median functional enrichment similarities of 

the background distribution of de novo-conserved ORF pairs on separate chromosomes. D) 

Down same de novo ORFs share a promoter with neighboring conserved ORFs significantly 

more often than up same ORFs. E) Conserved ORFs with downstream de novo ORFs have a 

significant increase in expression compared to conserved ORFs with upstream de novo ORFs. 

F) Existence of transcription termination factors (Pcf11 or Nrd1) in between conserved ORFs 

and nearby downstream de novo ORFs leads to less shared transcripts. G) Transcript isoforms 

(gray) at an example locus where there are no transcription termination factors present between

conserved ORF YBL015W (pink) and downstream de novo ORF chr2:195794-195847(+) (blue).

H) Transcript isoforms (gray) at an example locus where there is Pcf11 transcription terminator 

present (red line) between conserved ORF YPR034W (pink) and downstream de novo ORF 

chr16:641385-641534(+) (blue). All detected transcript isoforms on these loci are plotted for G 

and F. (For all panels: ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05, ns: not-significant; 

Mann-Whitney U-test)
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To understand the molecular mechanisms leading to the differences in expression, 

coexpression and biological process similarity between the orientations that can piggyback, 

which all have the potential to share a promoter with neighboring conserved ORF, we 

investigated which actually do by analyzing transcript architecture. Using a publicly available 

TIF-seq dataset [66], we defined down same or up same ORFs as sharing a promoter with their 

neighbor if they mapped to the same transcript at least once. We defined up opposite ORFs as 

sharing a promoter with their neighbor if their respective transcripts did not have overlapping 

TSSs, as would be expected for divergent promoters [83]. According to these criteria, 84% of 

down same (n = 174), 64% of up same (n = 368), and 66% of up opposite (n = 185) de novo 

ORFs share a promoter with their neighboring conserved ORFs (Supplementary Figure 14). 

Among all de novo ORFs that arose in orientations that can piggyback, those that share 

promoters with neighboring conserved ORFs displayed higher expression levels than those that 

do not (down same: d = 0.75, p = 1.06e-8; up same: d = 0.38, p = 1.23e-7; up opposite: d = 0.3, 

p = 2.9e-3 Mann-Whitney U-test, d: Cliff’s Delta; Figure 5A). We also observed a significant 

increase in coexpression and biological process similarity between de novo ORFs and their 

neighboring conserved ORFs when their promoters are shared compared to when they are not 

(coexpression: down same: d = 0.28, p = 2.99e-9; up same: d = 0.31, p < 2.2e-16; up opposite: 

d = 0.27, p = 2.1e-7; biological process similarity: down same: d = 0.24, p = 5.5e-7; up same: d 

= 0.108, p = 3.78e-3; up opposite: d = 0.24, p = 6.1e-6, d: Cliff’s Delta, Mann-Whitney U-test; 

Figures 5B and 5C, respectively). Hence, sharing a promoter led to increases in the three 

piggybacking metrics for the three orientations. 

Further supporting the notion that down same ORFs are particularly prone to piggybacking, the 

down same de novo ORFs that share a promoter with their conserved neighbors displayed 

much higher expression levels, and higher coexpression and biological process similarity with 

their conserved neighbor, than up same or up opposite ORFs that also share a promoter with 
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their conserved neighbors (expression: down same vs up same: d = 0.58; down same vs up 

opposite: d = 0.55; coexpression: down same vs up same: d = 0.29, down same vs up opposite:

d = 0.38; biological process similarity: down same vs up same: d = 0.37, down same vs up 

opposite: d = 0.45; d: Cliff’s Delta, p < 2.2e-16 for all comparisons, Mann-Whitney U-test). This 

could be due to down same ORF’s tendency to share promoters more often than up same 

ORFs, as a larger proportion of transcripts containing down same ORFs also contain a 

conserved ORF (down same vs up same: Cliff’s Delta d = 0.26, Mann-Whitney U-test p < 2.2e-

16; Figure 5D), or higher expression levels of conserved ORFs that have down same ORFs on 

their transcripts compared to conserved ORFs with up same or up opposite piggybacking ORFs 

(down same vs up same: d = 0.2, p = 5.4e-3; down same vs up opposite: d = 0.34, p = 6.5e-4, 

Mann-Whitney U-test, d: Cliff’s Delta; Figure 5E). 

Based on these results, we reasoned that transcriptional readthrough could be the molecular 

mechanism underlying the efficient transcriptional piggybacking of down same de novo ORFs. 

To investigate this hypothesis, we examined the impact of transcription terminators Pcf11 or 

Nrd1 on the frequency of transcript sharing between a conserved ORF and its downstream de 

novo ORF. Analyzing publicly available ChIP-exo data [65], we found that the presence of 

terminators between conserved ORFs and their downstream de novo ORF pairs resulted in a 

notably lower percentage of shared transcripts (Cliff’s Delta d = -0.39, p = 1.59e-10, Mann-

Whitney U-test; Figure 5F). As an illustration, consider the genomic region on chromosome II 

from bases 194,000 to 196,000, containing the conserved ORF YBL015W and a downstream 

de novo ORF (positions 195,794 to 195,847). No terminator factor is bound to the intervening 

DNA between these two ORFs. This pair has high coexpression, with ρ = 0.96 and we observed

that nearly all transcripts in this region containing the de novo ORF also include YBL015W 

(Figure 5G). In contrast, the genomic region on chromosome XVI from 639,000 to 641,800, 

containing the conserved ORF YPR034W and downstream de novo ORF (positions 641,385 to 
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641,534), does have a Pcf11 terminator factor between the pair, and as expected, none of the 

transcripts in this region contain both YPR034W and the de novo ORF, which have poor 

coexpression as a result (ρ = 0.1; Figure 5H). We conclude that sharing a transcript via 

transcriptional readthrough is the major transcriptional piggybacking mechanism for down same 

de novo ORFs.

Discussion

We explored the transcription of nORFs from multiple angles including network topology, 

associations with cellular processes, TF regulation, and influence of the locus of emergence on 

de novo ORF expression. Delving into network topology, we find that nORFs have distinct 

expression profiles that are strongly correlated with only a few other ORFs. Nearly all cORFs 

are coexpressed with at least one nORF, but the converse is not true. Numerous nORFs form 

new structured transcriptional modules, possibly involved in both known and unknown cellular 

processes. The addition of nORFs to the cellular network resulted in a more clustered network 

than expected by chance, highlighting the previously unsuspected influence of nORFs in 

shaping the coexpression landscape. 

Our study is the first to show a large-scale association between the expression of nORFs and 

cellular homeostasis and transport processes. We anticipate that future studies will follow up to 

test these associations experimentally. We also found nORFs to be preferentially associated 

with cellular processes related to metabolism, transposition and cell adhesion, but rarely with 

the core processes of the central dogma, DNA, RNA or protein processing. Genes involved in 

transport, metabolism, and stress tend to have more variable expression compared to genes in 

other pathways [84]. Pathways with more variable expression could be more likely to 
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incorporate novel ORFs, possibly as a form of adaptive transcriptional response. There are 

several consistent observations in the literature [47,85,86]. For instance, Li et al. [47] showed 

that many de novo ORFs are upregulated in heat shock. Wilson and Masel [87] found higher 

translation of de novo ORFs under starvation conditions. Carvunis et al. [24] found de novo 

cORFs are enriched for the GO term ‘response to stress’. Other studies showed examples of 

how specific de novo ORFs could be involved in stress response [35,88] or homeostasis 

[88,89]. For instance the de novo antifreeze glycoprotein AFGP allows Arctic codfish to live in 

colder environments [35] or MDF1 in yeast [88,90] was found in a screen to provide resistance 

to certain toxins and mediates ion homeostasis [91]. Our results, combined with these previous 

investigations, argue that a large fraction of nORFs provide adaptation to stresses and help 

maintain homeostasis, perhaps through modulation of transport processes. 

Recent research in yeast has revealed an enrichment of transmembrane domains [15,24,92,93] 

within de novo ORFs. Previous studies identified small nORFs and de novo ORFs that localize 

to diverse cellular membranes, such as those of the endoplasmic reticulum, Golgi, or 

mitochondria in different species [10,15,94–97]. These findings are consistent with the notion 

that de novo ORFs could play a role in a range of transport processes, such as ion, amino acid, 

or protein transport across cellular membranes. By establishing a connection between predicted

transmembrane domains and increased coexpression with transport-related genes, our findings 

set the stage for future experimental investigations into the precise molecular mechanisms and 

functional roles of nORFs in diverse transport systems.

Lastly, we explored how the preexisting regulatory context influences the transcriptional profiles 

of de novo ORFs. We found that de novo ORFs that piggyback off their neighboring conserved 
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ORFs’ promoters had increases in expression, coexpression and biological process similarity 

with their neighboring conserved ORFs. Strikingly, ORFs that emerge de novo downstream of 

conserved ORFs have the largest increases in expression, coexpression and biological process 

similarities with their neighbors compared to other orientations, largely due to transcriptional 

readthrough leading to transcript sharing. Previous studies have shown that the transcription of 

regions downstream of genes is functional and regulated [98]. A study in humans showed that 

readthrough transcription downstream of some genes is responsible for roughly 15%–30% of 

intergenic transcription and is induced by osmotic and heat stress creating extended transcripts 

that play a role in maintaining nuclear stability during stress [99]. Another study in humans and 

zebrafish showed that the translation of small ORFs located in the 3' UTR of mRNAs (dORFs) 

increased the translation rate of the upstream gene [100]. Lastly, a study in yeast found that 

genes which are preferentially expressed as bicistronic transcripts tend to contain evolutionarily 

younger genes compared to adjacent genes that do not share transcripts, suggesting that 

transcript sharing could provide a route for novel ORFs to become established genes [101]. 

These findings together with our results suggest that genomic regions downstream of genes 

may provide the most favorable environment for the transcription of de novo ORFs.

Our analyses show that the likelihood of a de novo ORF being expressed or repressed under 

the same conditions as the neighboring conserved ORF is influenced by the extent to which it 

piggybacks on the neighboring ORF's regulatory context. Therefore, in addition to the 

evolutionary pressure acting on the sequence of emerging ORFs, our results suggest that 

transcriptional regulation and genomic context also influence their functional potential. However,

this influence is not entirely deterministic, and much weaker when de novo ORFs emerge 

upstream than downstream of genes. Future studies are needed to map regulatory networks 

controlling nORF expression and reconstruct their evolutionary histories.
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There are several limitations to our study. First, while SpQN enhances the coexpression signal 

of lowly expressed ORFs, it comes at the cost of reducing signals in highly expressed ORFs 

[62]. Given our objective of studying lowly-expressed nORFs this tradeoff is deemed worthwhile.

Second, our study provides evidence of associations between nORFs and cellular processes 

such as homeostasis and transport, but these findings are based on transcription profile 

similarities which do not necessarily imply cotranslation or correlated protein abundances [102]. 

Furthermore, our analyses were performed in the yeast S. cerevisiae and the generalizability of 

our findings to other species requires further investigation. 

Conclusions

In conclusion, our study represents a significant step forward towards the characterization of 

nORFs. We employed advanced statistical methods to account for low expression levels and 

generate a high-quality coexpression network. Despite being lowly expressed, nORFs are 

coexpressed with almost every cORF. We find that numerous nORFs form structured, 

noncanonical-only transcriptional modules which could be involved in regulating novel cellular 

processes. We find that many nORFs are coexpressed with genes involved in homeostasis and 

transport related processes, suggesting that these pathways are most likely to incorporate novel

ORFs. Additionally, our investigation into the influence of genomic orientation on the expression 

and coexpression of de novo ORFs showed that ORFs located downstream of conserved ORFs

are most influenced by the pre-existing regulatory environment at their locus of emergence. Our 

findings provide a foundation for future research to further elucidate the roles of nORFs and de 

novo ORFs in cellular processes and their broader implications in adaptation and evolution.
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Methods

Creating ORF list

To create our initial ORF list, we utilized two sources. First, we took annotated ORFs in the S. 

cerevisiae genome R64-2-1 downloaded from SGD [103], which included 6,600 ORFs. Second, 

we utilized the translated ORF list from Wacholder et al. [14] reported in their Supplementary 

Table 3. We filtered to include cORFs (Verified, Uncharacterized or Transposable element 

genes) as well as any nORFs with evidence of translation at q value < 0.05 (Dubious, 

Pseudogenes and unannotated ORFs). We removed ORFs with lengths shorter than the 

alignment index kmer size of 25nt used for RNA-seq alignment. In situations where ORFs 

overlapped on the same strand with greater than 75% overlap of either ORF, we removed the 

shorter ORF using bedtools [104]. We removed ORFs that were exact sequence duplicates of 

another ORF. This left 5,878 cORFs and 18,636 nORFs, for a total of 24,514 ORFs used for 

RNA-seq alignment. 

RNA-seq data preprocessing

Strand specific RNA-seq samples were obtained from the Sequencing Read Archive (SRA) 

using the search query (saccharomyces cerevisiae[Organism]) AND rna sequencing. Each 

study was manually inspected and only studies that had an accompanying paper or detailed 

methods on Gene Expression Omnibus (GEO) were included. Samples were quality controlled 

(nucleotides with Phred score < 20 at end of reads were trimmed) and adapters were removed 

using TrimGalore version 0.6.4 [105]. Samples were aligned to the transcriptome GTF file 

containing the ORFs defined above and quantified using Salmon [106] version 0.12.0 with an 

index kmer size of 25. Samples with less than 1 million reads mapped or unstranded samples 
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were removed, resulting in an expression dataset of 3,916 samples from 174 studies 

(Supplementary Data 1). ORFs were removed to limit sparsity and increase the number of 

observations in the subsequent pairwise coexpression analysis. Only ORFs that had at least 

400 samples with a raw count > 5 were included for downstream coexpression analysis, n = 

11,630 ORFs (5,803 canonical and 5,827 noncanonical, Supplementary Data 2).

Coexpression calculations

The raw counts were transformed using clr. Pairwise proportionality was calculated using ρ [69] 

for each ORF pair. Spatial quantile normalization (SpQN) [62] of the coexpression network was 

performed using the mean clr expression value for each ORF as confounders to correct for 

mean expression bias, which resulted in similar distributions of coexpression values across 

varying expression levels (Supplementary Figure 2). Only ORF pairs that had at least 400 

samples expressing both ORFs (at raw >5) were included. This threshold was determined 

empirically as detailed below. 

Since zero values cannot be used with log ratio transformations, all zeros must be removed 

from the dataset. Proposed solutions in the literature on how to remove zeros, all of which have 

their pros and cons, include removing all genes that contain any zeros, imputing the zeros, or 

adding a pseudo count to all genes [107,108]. Removing all ORFs that contain any zeros is not 

possible for this analysis since the ORFs of interest are lowly and conditionally expressed. The 

addition of pseudocounts can be problematic when dealing with lowly expressed ORFs, for the 

addition of a small count is much more substantial for an ORF with a low read count compared 

to an ORF with a high read count [109]. For these reasons, all raw counts below 5 were set to 

NA prior to clr transformation. These observations were then excluded when calculating the clr 
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transformation and in the ρ calculations. We used clr and ρ implementations in R package Propr

[69] and implementation of SpQN from Wang et al. [62]. 

To determine the minimum number of samples needed expressing both ORFs in a pair, we 

determined the number of samples needed for coexpression values to converge within ρ ± 0.05 

or ρ ± 0.1 for 2,167 nORF-cORF pairs which have a ρ > 99th percentile (before SpQN). All 

samples expressing both ORFs in a pair were randomly binned into groups of 10, and ρ was 

calculated after each addition of another sample. Fluctuations were calculated as max(ρ)-min(ρ)

within a sample bin. Convergence was determined as the first sample bin with fluctuations ≤ 

fluctuation threshold, either 0.05 or 0.01 (Supplementary Figure 1).

Comparing coexpression inference approaches

To compare our approach with a batch correction approach, we used clr to transform the 

expression matrix, followed by removing the top principal component (PC1) of the clr expression

matrix to do batch correction using the function removePrincipalComponents from the WGCNA 

[70] R package. We then calculated ρ values and applied SpQN normalization. Additionally, we 

created a coexpression matrix based on TPM as well as RPKM normalized expression values 

instead of clr and calculated Pearson’s correlation coefficient.

Protein Complex enrichments

We retrieved a manually curated list of 408 protein complexes in S. cerevisiae from the 

CYC2008 database by Pu et al. [64]. The coexpression matrix was filtered to contain only the 

1,617 cORFs found in the CYC2008 database prior to creating the contingency table. Fisher’s 

exact test was used to calculate the significance of the association between coexpression and 
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protein complex formation. Coexpressed was defined as the 99.8th ρ percentile (ρ > 0.888) 

considering all ORF pairs in the coexpression matrix (n = 62,204,406 ORF pairs) for Figure 1C.

TF binding enrichments

A ChIP-exo dataset from Rossi et al. [65] containing DNA-binding information for 73 sequence-

specific TFs across the whole genome was used. For each ORF we identified which TFs had 

binding within 200 bp upstream of the ORF’s TSS. The TSSs for all ORFs in the coexpression 

matrix was determined by the median 5’ transcript isoform (TIF) start positions using TIF-seq 

[66] dataset. Only ORFs found in the TIF-seq dataset were considered (n = 5,334 cORFs and 

5,362 nORFs). To calculate the enrichments reported in Figures 1D, Supplementary Figure 5 

and Supplementary Figure 7, the coexpression matrix was first filtered to only include ORFs that

have at least 1 TF binding within 200 bp upstream of its TSS (n = 973 cORFs and 936 nORFs). 

Fisher’s exact test was used to calculate the association between coexpression and having their

promoters bound by a common TF. Coexpressed was defined as the 99.8th ρ percentile (ρ > 

0.888) considering all ORF pairs in the coexpression matrix (n = 62,204,406 ORF pairs) for 

Figure 1D.

Coexpression matrix clustering

We used the weighted gene coexpression network analysis (WGCNA) package [70] in R to 

cluster our coexpression matrix. To do this, we first transformed our coexpression matrix into a 

weighted adjacency matrix by applying a soft thresholding which involved raising the 

coexpression matrix to the power of 12. This removed weak coexpression relationships from the

matrix. We then used the topological overlap matrix (TOM) similarity to calculate the distances 

between each column and row of the matrix. Using the hclust function in R with the ward 

clustering method, we created a hierarchical clustering dendrogram. We then used the dynamic 
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tree cutting method within the WGCNA package to assign ORFs to coexpression clusters, 

resulting in 73 clusters of which 69 were mapped to the full coexpression network. ORFs in the 

other four clusters were not included in the network as they did not pass the ρ threshold.

GO analysis of clusters

We downloaded GO trees (file: go-basic.obo) and annotations (files: sgd.gaf) from ref. [110]. We

used the Python package, GOATools [111], to calculate the number of genes associated with 

each GO term in a cluster and the overall population of (all) genes in the coexpression matrix. 

We excluded annotations based on the evidence codes ND (no biological data available). We 

identified GO term enrichments by calculating the likelihood of the ratio of the cORFs associated

with a GO term within a cluster given the total number of cORFs associated with the same GO 

term in the background set of all cORFs in the coexpression matrix. We applied Fisher’s exact 

test and FDR with BH multiple testing correction [112] to calculate corrected p-values for the 

enrichment of GO term in the clusters. FDR < 0.05 was taken as a requirement for significance. 

We applied GO enrichment calculations only when there were at least 5 cORFs in the cluster 

(n=54).

Network randomization and topology analyses

To create random networks while preserving the same degree distribution, we used an edge 

swapping method (Supplementary Figure 9). This involved randomly selecting two edges in the 

network, which were either cORF-nORF or nORF-nORF edges and swapping them. The swap 

was accepted only if it did not disconnect any nodes from the network and the newly generated 

edges were not already present in the network. We repeated this process for at least ten times 

the number of edges in the network. Network diameter and transitivity were calculated using R 
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package igraph [113] and networks were plotted using spring embedded layout [74] in Python 

package networkx [114]. 

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) calculates enrichments of an ordered list of genes given 

a biological annotation such as GO or KEGG. For each ORF in our dataset, we used ρ values to

order annotated ORFs and provided this sorted set to fgsea [115] . We used the GO slim file 

downloaded from SGD [103] for GO annotations. We used clusterProfiler [116] R package to 

download KEGG annotations using KEGG REST API [78] on 1 April 2023 and then used 

fgseaMultilevel function in fgsea R package to calculate enrichments for both annotations 

individually. To calculate GO or KEGG terms that are enriched or depleted for nORFs compared

to cORFs, we calculated the number of cORFs and nORFs that had GSEA enrichments at BH 

adjusted FDR < 0.01. Using these counts we calculated the proportion of nORFs and cORFs 

associated with a GO or KEGG term and used Fisher’s exact test to assess the significance of 

association. P values returned by Fisher’s exact test were corrected for multiple hypothesis 

testing using BH correction. Odds ratios were calculated by dividing proportion of nORFs to 

proportion of cORFs. Proportions for the GO terms with BH adjusted FDR < 0.001 and Odds 

ratio greater than 2 or less than 0.5 are plotted in Figures 3A-B and are reported in 

Supplementary Data 5 and proportions for KEGG terms are plotted in Supplementary Figure 11 

and reported in Supplementary Data 6.

Transmembrane domain enrichment

Transmembrane domains were predicted using TMHMM 2.0 [75] for all nORFs. An ORF was 

classified as having a transmembrane domain if it was predicted to have at least one 

transmembrane domain. nORFs were classified as “coexpressed with transport-related genes” if
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the ORF had a GSEA enrichment at FDR < 0.01 with any of the 15 GO slim transport terms: 

transport, ion transport, amino acid transport, lipid transport, carbohydrate transport, regulation 

of transport, transmembrane transport, vacuolar transport, vesicle-mediated transport, 

endosomal transport, nucleobase-containing compound transport, Golgi vesicle transport, 

nucleocytoplasmic transport, nuclear transport, or cytoskeleton-dependent intracellular 

transport. Fisher’s exact test was used to calculate the significance of association between 

transport-related processes and transmembrane domain.

Differential expression analysis for TF deletion and 

overrepresentation tests

For Hsf1 analysis, RNA-seq samples were from Ciccarelli et al. (SRA accession SRP437124) 

[76]. Hsf1 deletion strains were compared to wild type (WT) strains when exposed to heat shock

conditions. For Sfp1 analysis, RNA-seq samples were from SRA accession SRP159150. In both

cases, deletion strains were compared to WT strains. Differential expression was calculated 

using R package DESeq2 [117], and ORFs were defined as differentially expressed if the log 

fold change (FC) in RNA expression between WT and control strains was greater than or less 

than 0.5 i.e. log(FC) > 0.5 or log(FC) < -0.5 and BH adjusted p-value < 0.05. ChIP-exo data for 

Hsf1 and Sfp1 binding was taken from Rossi et al. [65] and an ORF was labeled as having Hsf1 

or Sfp1 binding if the TF was found within 200 bp upstream of the ORF’s TSS. Fisher’s exact 

test was performed to see if there is an association between an nORF in a GO biological 

process and being regulated by the TF. We define an nORF to be "in" a GO term if it has a 

GSEA enrichment for that GO term at FDR < 0.01. We defined an nORF as regulated by a TF if 

the nORF had evidence of the TF binding within 200 bp of the nORF’s TSS in ChIP-exo and has

significantly downregulated expression in the TF deletion RNA-seq samples compared to the 
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WT samples. BH p-value correction was performed for all GO terms tested. Significant GO 

terms and the associated regulated nORFs are reported in Supplementary Data 8. 

Detection of homologs using BLAST 

We obtained the genomes of 332 budding yeasts from Shen et al. [118]. To investigate the 

homology of each non overlapping ORF in our dataset, we used TBLASTN and BLASTP [119] 

against each genome in the dataset, excluding the Saccharomyces genus. Default settings 

were used, with an e-value threshold of 0.0001. The BLASTP analysis was run against the list 

of protein coding genes used in Shen et al., while the TBLASTN analysis was run against each 

entire genome. We also applied BLASTP to annotated ORFs within the S. cerevisiae genome to

identify homology that could be caused by whole genome duplication or transposons.

Identification of de novo and conserved ORFs

To identify de novo ORFs, we applied several strict criteria. Firstly, we obtained translation q-

values and reading frame conservation (RFC) data from Wacholder et al. [14]. All cORFs and 

only nORFs with a translation q-value less than 0.05 were considered as potential de novo 

candidates. We excluded ORFs that overlapped with another cORF on the same strand or had 

TBLASTN or BLASTP hits outside of the Saccharomyces genus at e-value < 0.0001. Moreover, 

we eliminated ORFs that had BLASTP hits to another cORF in S. cerevisiae. From the 

remaining list of candidate de novo ORFs, we investigated whether their ancestral sequence 

could be noncoding. To do this, we utilized RFC values for each species within Saccharomyces 

genus. We classified ORFs as de novo if the RFC values for the most distant two branches 

were less than 0.6, suggesting the absence of a homologous ORF in those two species.

We identified conserved ORFs if a nonoverlapping cORF has an average RFC > 0.8 or has 

either TBLASTN or BLASTP hit at e-value < 0.0001 threshold. 
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To identify conserved cORFs with overlaps we first considered if the cORFs had a BLASTP 

outside of Saccharomyces genus with e-value < 0.0001. Then for two overlapping ORFs, if one 

had RFC > 0.8 and the other had RFC < 0.8, we considered the one with higher RFC as 

conserved. For the ORF pairs that were not assigned as conserved using these two criteria, we 

applied TBLASTN for the non-overlapping parts of the overlapping pairs. Those with a 

TBLASTN hit with e-value < 0.0001 were considered conserved. We found a total of 5,624 

conserved ORFs and 2,756 de novo ORFs.

Calculation of GO term similarities

GO term similarities were calculated using the Relevance method developed in Schlicker et al. 

[82]. This method considers both the information content (IC) of the GO terms that are being 

compared and the IC of their most informative ancestor. IC represents the frequency of a GO 

term; thus, an ancestral GO term has lower IC than a descendant. We used the GOSemSim 

[120] package in R that implements these similarity measures.
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Termination factor binding analysis

ChIP-exo data for Pcf11 and Nrd1 termination factor binding sites are taken from Rossi et al. 

[65]. This study reports binding sites at base pair resolution for S. cerevisiae for around 400 

proteins. We used supplementary bed formatted files for Pcf11 and Nrd1, which are known 

transcriptional terminators, and used in house R scripts to find binding sites within the regions 

between the stop codon of conserved ORFs and the start codon of down same de novo ORFs. 

ORF pairs were classified as having terminators present between them if there was either Pcf11

or Nrd1 binding. 

Determining shared promoters 

To determine whether two ORFs shared a promoter, we reused the TIF-Seq dataset from 

Pelechano et al. [66]. TIF-Seq is a sequencing method that detects the boundaries of TIFs. We 

extracted all reported TIFs from the supplementary data file S1 and identified all TIFs that fully 

cover each ORF in both YPD and galactose. We then used this information to find ORF pairs 

that mapped to the same TIFs for down same and up same pairs, as well as found TIFs with 

non-overlapping TSSs for up opposite de novo-conserved ORF pairs. ORF pairs where the 

conserved ORF was not found in the TIF-seq dataset were not included and pairs where the de 

novo ORF was not found were considered to not share a promoter. 

Web application

We utilized R language [121] and the shiny framework [73] to develop a web application which 

allows querying of ORFs in our dataset for information about their coexpression with other 

ORFs, network visualization, and GSEA enrichments. It can be accessed through a web 

browser and is available at https://carvunislab.csb.pitt.edu/shiny/coexpression/.
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Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1 To understand the effect of sample size on coexpression values and to 

determine how many samples is sufficient for ρ to converge, we recalculated coexpression for a 

given ORF pair using n = 2 samples through n = all samples. Fluctuations were calculated as 
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max(ρ)-min(ρ) within bins of 10 samples. The number of samples needed for ρ to converge was

calculated as the first sample bin where ρ fluctuations ≤ fluctuation threshold, either 0.1 or 0.05. 

Histogram showing the minimum number of samples needed for ρ values to converge within ρ ±

0.05 (left) and ρ ± 0.1 (right) for 2,167 cORF-nORF pairs with ρ > 99th percentile. Red dashed 

lines show the median number of samples needed.
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Supplementary Figure 2

Supplementary Figure 2 Distribution of coexpression values (ρ) for ORF pairs binned by 

expression level, from lowly expressed pairs top to highly expressed pairs bottom, A) before 

spatial quantile normalization (SpQN) and B) after SpQN, which normalizes the coexpression 

values so that the distribution within each expression bin is similar. 
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Supplementary Figure 3

Supplementary Figure 3 Network threshold affects cORFs and nORFs differently. Left shows 

the proportion of cORFs or nORFs in the network at each quantile threshold and the right shows

the number of connections in the network. Dashed line represents 0.9998 quantile which was 

chosen for creating the network.
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Supplementary Figure 4

Supplementary Figure 4 Coexpressed cORFs pairs are more likely to encode proteins that form 

protein complexes than non-coexpressed cORF pairs, and this is consistent across different 

coexpression cutoffs. Coexpression was defined using the top 90th, 95th, 99th, and 99.9th 

percentile of all ORF pairs in the network (n = 62,204,406 ORF pairs). 90th percentile (ρ > 

0.713) Odds ratio = 8.89; 95th percentile (ρ > 0.763) Odds ratio = 9.59; 99th percentile (ρ > 

0.836) Odds ratio = 9.23; 99.9th percentile (ρ > 0.906) Odds ratio = 12.1; Fisher’s exact test p < 

2.2e-16 for all comparisons. Numbers above bars represent the number of ORF pairs in each 

category. Error bars represent the standard error of the proportion. A list of 408 protein 

complexes were retrieved from Pu et al. CYC2008 database [64]. Enrichments were calculated 

using only the 1,617 cORFs found in the CYC2008 database.
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Supplementary Figure 5

Supplementary Figure 5 Coexpressed ORF pairs are more likely to have their promoters bound 

by a common TF than non-coexpressed ORF pairs, and this is true across different 

coexpression cutoffs and for canonical-canonical (cc), canonical-noncanonical (cn) and 

noncanonical-noncanonical (nn) ORF pairs. Coexpression was defined using the top 90th, 95th,

99th, and 99.9th percentile of all ORF pairs in the network (n = 62,204,406 ORF pairs). 90th 

percentile (ρ > 0.713): cc Odds ratio = 2.08, cn Odds ratio = 1.42, nn Odds ratio = 1.38; 95th 

percentile (ρ > 0.763): cc Odds ratio = 2.38, cn Odds ratio = 1.50, nn Odds ratio = 1.45; 99th 

percentile (ρ > 0.836): cc Odds ratio = 3.19, cn Odds ratio = 1.85, nn Odds ratio = 1.82; 99.9th 

percentile (ρ > 0.906): cc Odds ratio = 4.57, cn Odds ratio = 3.10, nn Odds ratio = 4.29; ****: 

Fisher’s exact test p < 2.2e-16 for all comparisons. Error bars represent the standard error of 
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the proportion. Using a ChIP-exo dataset from Rossi et al. [65] containing DNA-binding 

information for 73 sequence-specific TFs, TF binding was defined as a ChIP-exo peak within 

200 bp upstream of the ORF’s TSS. Only ORFs whose promoter was bound by at least one TF 

were considered. Numbers above bars represent the number of ORF pairs in each category. 

Supplementary Figure 6

Supple

mentary Figure 6 Clustered matrix heatmap. Coexpression values are first transformed by 
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taking power of 12 and then WGCNA pipeline [70] is applied. Clusters are determined by cutting

dendrograms (see methods for details). Colors on ‘clusters’ section represent the different 

clusters. Values of 0.3 and above are represented by red to show the structure of the heatmap. 

Supplementary Figure 7

Supplementary Figure 7 Using clr normalization, ρ similarity metric and SpQN normalization 

leads to the highest odds ratios for nORF-nORF coexpressed pairs to also have their promoters

bound by common TFs. Our method (pink) uses clr to transform the expression matrix, uses 

proportionality metric ρ to calculate coexpression and SpQN to normalize the coexpression 

matrix. Method TPM + pearson (green) uses TPM to normalize the expression matrix followed 

by Pearson correlation to calculate coexpression. Method clr + batch correction + rho + SpQN 

(blue) uses clr to transform the expression matrix, followed by removing the top principal 
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component of the clr expression matrix to do batch correction, followed by calculating 

coexpression using proportionality metric ρ and SpQN normalization of the coexpression matrix.

Method RPKM + pearson correlation (purple) uses RPKM to normalize the expression matrix 

followed by Pearson correlation to calculate coexpression. Coexpression percentiles were 

determined using all ORF pairs (n = 62,204,406 ORF pairs). All odds ratios are significant at p <

2.15e-5, Fisher exact test. Batch correction performed by removing the top principal component 

on the clr transformed expression matrix. Error bars represent the 95% confidence interval of 

the odds ratio. Dashed line shows an odds ratio of 1.

Supplementary Figure 8
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Supplementary Figure 8 Proportion of nORFs defined as coexpressed (and therefore included 

in the coexpression network) at various coexpression percentile cutoffs using four different 

methods. Our method (pink) uses clr to transform the expression matrix, uses proportionality 

metric ρ to calculate coexpression and SpQN to normalize the coexpression matrix. Method 

TPM + Pearson (green) uses TPM to normalize the expression matrix followed by Pearson 

correlation to calculate coexpression. Method ρ + batch correction (blue) uses clr to transform 

the expression matrix, followed by removing the top principal component of the clr expression 

matrix to do batch correction, followed by calculating coexpression using proportionality metric ρ

and SpQN normalization of the coexpression matrix. Method RPKM + pearson correlation 

(purple) uses RPKM to normalize the expression matrix followed by Pearson correlation to 

calculate coexpression. Coexpression percentiles were determined using all ORF pairs (n = 

62,204,406 ORF pairs).

54

107

947

948

949

950

951

952

953

954

955

956

957

958

108

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 9

Supplementary Figure 9 Strategy for generating randomized networks. Edges between cORF-

nORF and nORF-nORF pairs were swapped in a pairwise manner such that the degree of each 

node stayed the same. Edges between cORF-cORF pairs were not randomized. 
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Supplementary Figure 10

Supplementary Figure 10 GSEA pipeline using coexpression profiles to find GO terms that are 

more likely to incorporate nORFs. 
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Supplementary Figure 11

Supplementary Figure 11 KEGG pathways that proportionally have more (left) (Odds ratio > 2, n

= 37 terms) or less (right) (Odds ratio < 0.5, n = 10 terms) GSEA enrichments with nORFs 

compared to cORFs (y-axis ordered by nORF enrichment proportion from highest to lowest, BH 

adjusted FDR < 0.001 for all terms, Fisher’s exact test). Error bars represent the standard error 

of the proportion.
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Supplementary Figure 12

Supplementary Figure 12 GO terms that proportionally have more (left) (Odds ratio > 2, n = 35 

terms) or less (right) (Odds ratio < 0.5, n = 11 terms) GSEA enrichments with de novo ORFs 

compared to conserved ORFs (y-axis ordered by de novo ORF enrichment proportion from 

highest to lowest, BH adjusted FDR < 0.001 for all terms, Fisher’s exact test). Error bars 

represent the standard error of the proportion.
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Supplementary Figure 13 

Supplementary Figure 13 A) Coexpression (y-axis) of de novo ORFs with neighboring 

conserved ORFs per orientation (x-axis). Down same de novo ORFs tend to be highly 

coexpressed with their neighbors; background: de novo-conserved ORF pairs located on 

different chromosomes. B) Biological process similarity (y-axis) of de novo ORFs with 

neighboring conserved ORFs per orientation (x-axis). Similarity measured by calculating 

semantic similarity between GSEA enrichments for neighboring de novo-conserved ORF pairs 

using relevance metric (0 = no similarity, 1 = perfect overlap); background: de novo-conserved 

ORF pairs located on different chromosomes. C) Median expression of de novo ORFs (y-axis) 

59

117

982

983

984

985

986

987

988

989

990

991

118

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


per orientation (x-axis). De novo ORFs located downstream on the same strand as conserved 

ORFs have the highest expression among different orientations (considering only ORFs in only 

a single orientation, dashed box in panel 4D; independent: de novo ORFs located further than 

500 bp from all conserved ORFs). For panels A-B-C: Mann-Whitney U-test, ****: p ≤ 0.0001, ***:

p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05, ns: not-significant, +: small effect size (Cliff’s d < 0.33), ++: 

medium effect size (Cliff’s d < 0.474), +++: large effect size (Cliff’s d ≥ 0.474); all orientations 

are compared to either background pairs (A, B) or to independent ORFs (C).

Supplementary Figure 14

Supplementary Figure 14 Proportion of de novo ORFs that share a promoter with their 

neighboring conserved ORF. To determine if ORFs shared a promoter with neighbors we used 

a publicly available TIF-seq dataset from Pelechano et al [65]. We defined down same or up 

same ORFs as sharing a promoter if they mapped to the same transcript at least once, and 
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defined up opposite ORFs as sharing a promoter if their respective transcripts did not have 

overlapping TSSs. We found that 84% of down same (n = 174), 64% of up same (n = 368), and 

66% of up opposite (n = 185) de novo ORFs share a promoter with their neighboring conserved 

ORF. Error bars represent the standard error of the proportion.

References

[1] Dujon B. The yeast genome project: what did we learn? Trends Genet TIG 1996;12:263–

70. https://doi.org/10.1016/0168-9525(96)10027-5.

[2] Fisk DG, Ball CA, Dolinski K, Engel SR, Hong EL, Issel-Tarver L, et al. Saccharomyces 

cerevisiae S288C genome annotation: a working hypothesis. Yeast Chichester Engl 

2006;23:857–65. https://doi.org/10.1002/yea.1400.

[3] Basrai MA, Hieter P, Boeke JD. Small Open Reading Frames: Beautiful Needles in the 

Haystack. Genome Res 1997;7:768–71. https://doi.org/10.1101/gr.7.8.768.

[4] Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The 

Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science 

2008;320:1344–9. https://doi.org/10.1126/science.1158441.

[5] Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-Wide Analysis in 

Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science 

2009;324:218–23. https://doi.org/10.1126/science.1168978.

[6] Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJS, Jackson SE, et al. 

Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding 

Genes. Cell Rep 2014;8:1365–79. https://doi.org/10.1016/j.celrep.2014.07.045.

[7] Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, et 

al. Identification of small ORFs in vertebrates using ribosome footprinting and 

61

121

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

122

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


evolutionary conservation. EMBO J 2014;33:981–93. 

https://doi.org/10.1002/embj.201488411.

[8] Couso J-P, Patraquim P. Classification and function of small open reading frames. Nat 

Rev Mol Cell Biol 2017;18:575–89. https://doi.org/10.1038/nrm.2017.58.

[9] Lu S, Zhang J, Lian X, Sun L, Meng K, Chen Y, et al. A hidden human proteome encoded

by ‘non-coding’ genes. Nucleic Acids Res 2019;47:8111–25. 

https://doi.org/10.1093/nar/gkz646.

[10] Chen J, Brunner A-D, Cogan JZ, Nuñez JK, Fields AP, Adamson B, et al. Pervasive 

functional translation of noncanonical human open reading frames. Science 

2020;367:1140–6. https://doi.org/10.1126/science.aay0262.

[11] Orr MW, Mao Y, Storz G, Qian S-B. Alternative ORFs and small ORFs: shedding light on 

the dark proteome. Nucleic Acids Res 2020;48:1029–42. 

https://doi.org/10.1093/nar/gkz734.

[12] Vitorino R, Guedes S, Amado F, Santos M, Akimitsu N. The role of micropeptides in 

biology. Cell Mol Life Sci 2021;78:3285–98. https://doi.org/10.1007/s00018-020-03740-3.

[13] Prensner JR, Enache OM, Luria V, Krug K, Clauser KR, Dempster JM, et al. 

Noncanonical open reading frames encode functional proteins essential for cancer cell 

survival. Nat Biotechnol 2021;39:697–704. https://doi.org/10.1038/s41587-020-00806-2.

[14] Wacholder A, Parikh SB, Coelho NC, Acar O, Houghton C, Chou L, et al. A vast 

evolutionarily transient translatome contributes to phenotype and fitness. Cell Syst 

2023;14:363-381.e8. https://doi.org/10.1016/j.cels.2023.04.002.

[15] Vakirlis N, Acar O, Hsu B, Castilho Coelho N, Van Oss SB, Wacholder A, et al. De novo 

emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nat 

Commun 2020;11:781. https://doi.org/10.1038/s41467-020-14500-z.

62

123

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

124

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[16] Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, et al. Regulation of DNA 

repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature 

2017;549:548–52. https://doi.org/10.1038/nature24023.

[17] Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR, McAnally JR, et 

al. A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle 

Performance. Cell 2015;160:595–606. https://doi.org/10.1016/j.cell.2015.01.009.

[18] Magny EG, Pueyo JI, Pearl FMG, Cespedes MA, Niven JE, Bishop SA, et al. Conserved 

Regulation of Cardiac Calcium Uptake by Peptides Encoded in Small Open Reading 

Frames. Science 2013;341:1116–20. https://doi.org/10.1126/science.1238802.

[19] Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. 

mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR 

polypeptide. Nature 2017;541:228–32. https://doi.org/10.1038/nature21034.

[20] Jackson R, Kroehling L, Khitun A, Bailis W, Jarret A, York AG, et al. The translation of 

non-canonical open reading frames controls mucosal immunity. Nature 2018;564:434–8. 

https://doi.org/10.1038/s41586-018-0794-7.

[21] Bhatta A, Atianand M, Jiang Z, Crabtree J, Blin J, Fitzgerald KA. A Mitochondrial 

Micropeptide Is Required for Activation of the Nlrp3 Inflammasome. J Immunol 

2020;204:428–37. https://doi.org/10.4049/jimmunol.1900791.

[22] Niu X, Zhang J, Zhang L, Hou Y, Pu S, Chu A, et al. Weighted Gene Co-Expression 

Network Analysis Identifies Critical Genes in the Development of Heart Failure After 

Acute Myocardial Infarction. Front Genet 2019;10. 

https://doi.org/10.3389/fgene.2019.01214.

[23] Wright BW, Yi Z, Weissman JS, Chen J. The dark proteome: translation from 

noncanonical open reading frames. Trends Cell Biol 2021. 

https://doi.org/10.1016/j.tcb.2021.10.010.

63

125

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

126

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[24] Carvunis A-R, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, et al. 

Proto-genes and de novo gene birth. Nature 2012;487:370–4. 

https://doi.org/10.1038/nature11184.

[25] Van Oss SB, Carvunis A-R. De novo gene birth. PLOS Genet 2019;15:e1008160. 

https://doi.org/10.1371/journal.pgen.1008160.

[26] Sandmann C-L, Schulz JF, Ruiz-Orera J, Kirchner M, Ziehm M, Adami E, et al. 

Evolutionary origins and interactomes of human, young microproteins and small peptides 

translated from short open reading frames. Mol Cell 2023;83:994-1011.e18. 

https://doi.org/10.1016/j.molcel.2023.01.023.

[27] Zhang W, Landback P, Gschwend AR, Shen B, Long M. New genes drive the evolution of

gene interaction networks in the human and mouse genomes. Genome Biol 2015;16:202.

https://doi.org/10.1186/s13059-015-0772-4.

[28] Abrusán G. Integration of New Genes into Cellular Networks, and Their Structural 

Maturation. Genetics 2013;195:1407–17. https://doi.org/10.1534/genetics.113.152256.

[29] Capra JA, Pollard KS, Singh M. Novel genes exhibit distinct patterns of function 

acquisition and network integration. Genome Biol 2010;11:R127. 

https://doi.org/10.1186/gb-2010-11-12-r127.

[30] Housman G, Ulitsky I. Methods for distinguishing between protein-coding and long 

noncoding RNAs and the elusive biological purpose of translation of long noncoding 

RNAs. Biochim Biophys Acta BBA - Gene Regul Mech 2016;1859:31–40. 

https://doi.org/10.1016/j.bbagrm.2015.07.017.

[31] Pertea M, Shumate A, Pertea G, Varabyou A, Breitwieser FP, Chang Y-C, et al. CHESS: 

a new human gene catalog curated from thousands of large-scale RNA sequencing 

experiments reveals extensive transcriptional noise. Genome Biol 2018;19:208. 

https://doi.org/10.1186/s13059-018-1590-2.

64

127

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

128

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[32] Xu H, Li C, Xu C, Zhang J. Chance promoter activities illuminate the origins of eukaryotic 

intergenic transcriptions. Nat Commun 2023;14:1826. https://doi.org/10.1038/s41467-

023-37610-w.

[33] Schlötterer C. Genes from scratch – the evolutionary fate of de novo genes. Trends 

Genet 2015;31:215–9. https://doi.org/10.1016/j.tig.2015.02.007.

[34] Zhao L, Saelao P, Jones CD, Begun DJ. Origin and spread of de novo genes in 

Drosophila melanogaster populations. Science 2014;343:769–72. 

https://doi.org/10.1126/science.1248286.

[35] Zhuang X, Yang C, Murphy KR, Cheng C-HC. Molecular mechanism and history of non-

sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc Natl 

Acad Sci 2019;116:4400–5. https://doi.org/10.1073/pnas.1817138116.

[36] Ruiz-Orera J, Hernandez-Rodriguez J, Chiva C, Sabidó E, Kondova I, Bontrop R, et al. 

Origins of De Novo Genes in Human and Chimpanzee. PLOS Genet 2015;11:e1005721. 

https://doi.org/10.1371/journal.pgen.1005721.

[37] Vakirlis N, Vance Z, Duggan KM, McLysaght A. De novo birth of functional microproteins 

in the human lineage. Cell Rep 2022;41:111808. 

https://doi.org/10.1016/j.celrep.2022.111808.

[38] Majic P, Payne JL. Enhancers Facilitate the Birth of De Novo Genes and Gene 

Integration into Regulatory Networks. Mol Biol Evol 2020;37:1165–78. 

https://doi.org/10.1093/molbev/msz300.

[39] Ruiz-Orera J, Villanueva-Cañas JL, Albà MM. Evolution of new proteins from translated 

sORFs in long non-coding RNAs. Exp Cell Res 2020;391:111940. 

https://doi.org/10.1016/j.yexcr.2020.111940.

[40] Chen J-Y, Shen QS, Zhou W-Z, Peng J, He BZ, Li Y, et al. Emergence, Retention and 

Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral 

65

129

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

130

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


LncRNAs in Primates. PLOS Genet 2015;11:e1005391. 

https://doi.org/10.1371/journal.pgen.1005391.

[41] Vakirlis N, Hebert AS, Opulente DA, Achaz G, Hittinger CT, Fischer G, et al. A Molecular 

Portrait of De Novo Genes in Yeasts. Mol Biol Evol 2018;35:631–45. 

https://doi.org/10.1093/molbev/msx315.

[42] Neme R, Tautz D. Fast turnover of genome transcription across evolutionary time 

exposes entire non-coding DNA to de novo gene emergence. ELife 2016;5:e09977. 

https://doi.org/10.7554/eLife.09977.

[43] Knowles DG, McLysaght A. Recent de novo origin of human protein-coding genes. 

Genome Res 2009;19:1752–9. https://doi.org/10.1101/gr.095026.109.

[44] Ebisuya M, Yamamoto T, Nakajima M, Nishida E. Ripples from neighbouring 

transcription. Nat Cell Biol 2008;10:1106–13. https://doi.org/10.1038/ncb1771.

[45] Ghanbarian AT, Hurst LD. Neighboring Genes Show Correlated Evolution in Gene 

Expression. Mol Biol Evol 2015;32:1748–66. https://doi.org/10.1093/molbev/msv053.

[46] Ji Z, Song R, Regev A, Struhl K. Many lncRNAs, 5’UTRs, and pseudogenes are 

translated and some are likely to express functional proteins. ELife 2015;4:e08890. 

https://doi.org/10.7554/eLife.08890.

[47] Li J, Singh U, Arendsee Z, Wurtele ES. Landscape of the Dark Transcriptome Revealed 

Through Re-mining Massive RNA-Seq Data. Front Genet 2021;12.

[48] O’Meara TR, O’Meara MJ. DeORFanizing Candida albicans Genes using Coexpression. 

MSphere 2021;6:e01245-20. https://doi.org/10.1128/mSphere.01245-20.

[49] Chothani SP, Adami E, Widjaja AA, Langley SR, Viswanathan S, Pua CJ, et al. A high-

resolution map of human RNA translation. Mol Cell 2022;82:2885-2899.e8. 

https://doi.org/10.1016/j.molcel.2022.06.023.

66

131

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

132

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[50] Kim SK, Lund J, Kiraly M, Duke K, Jiang M, Stuart JM, et al. A Gene Expression Map for 

Caenorhabditis elegans. Science 2001;293:2087–92. 

https://doi.org/10.1126/science.1061603.

[51] Stuart JM, Segal E, Koller D, Kim SK. A Gene-Coexpression Network for Global 

Discovery of Conserved Genetic Modules. Science 2003;302:249–55. 

https://doi.org/10.1126/science.1087447.

[52] Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H. Gene co-expression network analysis 

reveals common system-level properties of prognostic genes across cancer types. Nat 

Commun 2014;5:3231. https://doi.org/10.1038/ncomms4231.

[53] Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic 

analysis of autistic brain reveals convergent molecular pathology. Nature 2011;474:380–

4. https://doi.org/10.1038/nature10110.

[54] Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, et al. Genetic programs in human and 

mouse early embryos revealed by single-cell RNA sequencing. Nature 2013;500:593–7. 

https://doi.org/10.1038/nature12364.

[55] Lee J, Shah M, Ballouz S, Crow M, Gillis J. CoCoCoNet: conserved and comparative co-

expression across a diverse set of species. Nucleic Acids Res 2020;48:W566–71. 

https://doi.org/10.1093/nar/gkaa348.

[56] van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression 

analysis for functional classification and gene–disease predictions. Brief Bioinform 

2018;19:575–92. https://doi.org/10.1093/bib/bbw139.

[57] Yin W, Mendoza L, Monzon-Sandoval J, Urrutia AO, Gutierrez H. Emergence of co-

expression in gene regulatory networks. PLOS ONE 2021;16:e0247671. 

https://doi.org/10.1371/journal.pone.0247671.

[58] Hanada K, Higuchi-Takeuchi M, Okamoto M, Yoshizumi T, Shimizu M, Nakaminami K, et 

al. Small open reading frames associated with morphogenesis are hidden in plant 

67

133

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

134

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


genomes. Proc Natl Acad Sci 2013;110:2395–400. 

https://doi.org/10.1073/pnas.1213958110.

[59] Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa NK. Transcriptomic 

analysis of rice in response to iron deficiency and excess. Rice 2014;7:18. 

https://doi.org/10.1186/s12284-014-0018-1.

[60] Stiens J, Tan YY, Joyce R, Arnvig KB, Kendall SL, Nobeli I. Using a Whole Genome Co-

expression Network to Inform the Functional Characterisation of Predicted Genomic 

Elements from Mycobacterium tuberculosis Transcriptomic Data 

2022:2022.06.22.497203. https://doi.org/10.1101/2022.06.22.497203.

[61] Li H, Xiao L, Zhang L, Wu J, Wei B, Sun N, et al. FSPP: A Tool for Genome-Wide 

Prediction of smORF-Encoded Peptides and Their Functions. Front Genet 2018;9. 

https://doi.org/10.3389/fgene.2018.00096.

[62] Wang Y, Hicks SC, Hansen KD. Addressing the mean-correlation relationship in co-

expression analysis. PLOS Comput Biol 2022;18:e1009954. 

https://doi.org/10.1371/journal.pcbi.1009954.

[63] Crow M, Paul A, Ballouz S, Huang ZJ, Gillis J. Exploiting single-cell expression to 

characterize co-expression replicability. Genome Biol 2016;17:101. 

https://doi.org/10.1186/s13059-016-0964-6.

[64] Pu S, Wong J, Turner B, Cho E, Wodak SJ. Up-to-date catalogues of yeast protein 

complexes. Nucleic Acids Res 2009;37:825–31. https://doi.org/10.1093/nar/gkn1005.

[65] Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, et al. A high-resolution 

protein architecture of the budding yeast genome. Nature 2021;592:309–14. 

https://doi.org/10.1038/s41586-021-03314-8.

[66] Pelechano V, Wei W, Steinmetz LM. Extensive transcriptional heterogeneity revealed by 

isoform profiling. Nature 2013;497:127–31. https://doi.org/10.1038/nature12121.

68

135

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

136

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[67] Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. 

Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic 

Acids Res 2012;40:D700–5. https://doi.org/10.1093/nar/gkr1029.

[68] Skinnider MA, Squair JW, Foster LJ. Evaluating measures of association for single-cell 

transcriptomics. Nat Methods 2019;16:381–6. https://doi.org/10.1038/s41592-019-0372-4.

[69] Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: An R-package for Identifying 

Proportionally Abundant Features Using Compositional Data Analysis. Sci Rep 

2017;7:16252. https://doi.org/10.1038/s41598-017-16520-0.

[70] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 

analysis. BMC Bioinformatics 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

[71] Ballouz S, Verleyen W, Gillis J. Guidance for RNA-seq co-expression network 

construction and analysis: safety in numbers. Bioinformatics 2015;31:2123–30. 

https://doi.org/10.1093/bioinformatics/btv118.

[72] Parsana P, Ruberman C, Jaffe AE, Schatz MC, Battle A, Leek JT. Addressing 

confounding artifacts in reconstruction of gene co-expression networks. Genome Biol 

2019;20:94. https://doi.org/10.1186/s13059-019-1700-9.

[73] Chang W, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, et al. shiny: Web application 

framework for R. 2023.

[74] Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pract

Exp 1991;21:1129–64. https://doi.org/10.1002/spe.4380211102.

[75] Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein 

topology with a hidden markov model: application to complete genomes. J Mol Biol 

2001;305:567–80. https://doi.org/10.1006/jmbi.2000.4315.

[76] Ciccarelli M, Masser AE, Kaimal JM, Planells J, Andréasson C. Genetic inactivation of 

essential HSF1 reveals an isolated transcriptional stress response selectively induced by 

protein misfolding 2023:2023.05.05.539545. https://doi.org/10.1101/2023.05.05.539545.

69

137

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

138

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[77] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene 

set enrichment analysis: A knowledge-based approach for interpreting genome-wide 

expression profiles. Proc Natl Acad Sci 2005;102:15545–50. 

https://doi.org/10.1073/pnas.0506580102.

[78] Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference 

resource for gene and protein annotation. Nucleic Acids Res 2016;44:D457–62. 

https://doi.org/10.1093/nar/gkv1070.

[79] Hu Z, Killion PJ, Iyer VR. Genetic reconstruction of a functional transcriptional regulatory 

network. Nat Genet 2007;39:683–7. https://doi.org/10.1038/ng2012.

[80] Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, et al. Sfp1 is a stress- 

and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci 

2004;101:14315–22. https://doi.org/10.1073/pnas.0405353101.

[81] Masser AE, Kang W, Roy J, Mohanakrishnan Kaimal J, Quintana-Cordero J, Friedländer 

MR, et al. Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. ELife 

2019;8:e47791. https://doi.org/10.7554/eLife.47791.

[82] Schlicker A, Domingues FS, Rahnenführer J, Lengauer T. A new measure for functional 

similarity of gene products based on Gene Ontology. BMC Bioinformatics 2006;7:302. 

https://doi.org/10.1186/1471-2105-7-302.

[83] Wei W, Pelechano V, Järvelin AI, Steinmetz LM. Functional consequences of bidirectional

promoters. Trends Genet 2011;27:267–76. https://doi.org/10.1016/j.tig.2011.04.002.

[84] Zrimec J, Börlin CS, Buric F, Muhammad AS, Chen R, Siewers V, et al. Deep learning 

suggests that gene expression is encoded in all parts of a co-evolving interacting gene 

regulatory structure. Nat Commun 2020;11:6141. https://doi.org/10.1038/s41467-020-

19921-4.

70

139

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

140

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[85] Blevins WR, Ruiz-Orera J, Messeguer X, Blasco-Moreno B, Villanueva-Cañas JL, 

Espinar L, et al. Uncovering de novo gene birth in yeast using deep transcriptomics. Nat 

Commun 2021;12:604. https://doi.org/10.1038/s41467-021-20911-3.

[86] Khitun A, Ness TJ, Slavoff SA. Small open reading frames and cellular stress responses. 

Mol Omics 2019;15:108–16. https://doi.org/10.1039/C8MO00283E.

[87] Wilson BA, Masel J. Putatively Noncoding Transcripts Show Extensive Association with 

Ribosomes. Genome Biol Evol 2011;3:1245–52. https://doi.org/10.1093/gbe/evr099.

[88] Li D, Yan Z, Lu L, Jiang H, Wang W. Pleiotropy of the de novo-originated gene MDF1. Sci

Rep 2014;4. https://doi.org/10.1038/srep07280.

[89] Frumkin I, Laub MT. Selection of a de novo gene that can promote survival of E. coli by 

modulating protein homeostasis pathways 2023:2023.02.07.527531. 

https://doi.org/10.1101/2023.02.07.527531.

[90] Li D, Dong Y, Jiang Y, Jiang H, Cai J, Wang W. A de novo originated gene depresses 

budding yeast mating pathway and is repressed by the protein encoded by its antisense 

strand. Cell Res 2010;20:408–20. https://doi.org/10.1038/cr.2010.31.

[91] Pagé N, Gérard-Vincent M, Ménard P, Beaulieu M, Azuma M, Dijkgraaf GJP, et al. A 

Saccharomyces cerevisiae Genome-Wide Mutant Screen for Altered Sensitivity to K1 

Killer Toxin. Genetics 2003;163:875–94. https://doi.org/10.1093/genetics/163.3.875.

[92] Tassios E, Nikolaou C, Vakirlis N. Intergenic Regions of Saccharomycotina Yeasts are 

Enriched in Potential to Encode Transmembrane Domains. Mol Biol Evol 

2023;40:msad059. https://doi.org/10.1093/molbev/msad059.

[93] Peng J, Zhao L. The origin and structural evolution of de novo genes in Drosophila 

2023:2023.03.13.532420. https://doi.org/10.1101/2023.03.13.532420.

[94] Kesner JS, Chen Z, Aparicio AA, Wu X. A unified model for the surveillance of translation 

in diverse noncoding sequences 2022:2022.07.20.500724. 

https://doi.org/10.1101/2022.07.20.500724.

71

141

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

142

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[95] Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, et al. Peptidomic 

discovery of short open reading frame–encoded peptides in human cells. Nat Chem Biol 

2013;9:59–64. https://doi.org/10.1038/nchembio.1120.

[96] Zhang S, Reljić B, Liang C, Kerouanton B, Francisco JC, Peh JH, et al. Mitochondrial 

peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nat 

Commun 2020;11:1312. https://doi.org/10.1038/s41467-020-14999-2.

[97] Leong AZ-X, Lee PY, Mohtar MA, Syafruddin SE, Pung Y-F, Low TY. Short open reading 

frames (sORFs) and microproteins: an update on their identification and validation 

measures. J Biomed Sci 2022;29:19. https://doi.org/10.1186/s12929-022-00802-5.

[98] Mayr C. What Are 3′ UTRs Doing? Cold Spring Harb Perspect Biol 2019;11:a034728. 

https://doi.org/10.1101/cshperspect.a034728.

[99] Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread Inducible 

Transcription Downstream of Human Genes. Mol Cell 2015;59:449–61. 

https://doi.org/10.1016/j.molcel.2015.06.016.

[100] Wu Q, Wright M, Gogol MM, Bradford WD, Zhang N, Bazzini AA. Translation of small 

downstream ORFs enhances translation of canonical main open reading frames. EMBO J

2020;39:e104763. https://doi.org/10.15252/embj.2020104763.

[101] Wu B, Cox MP. Characterization of Bicistronic Transcription in Budding Yeast. MSystems

2021;6:e01002-20. https://doi.org/10.1128/mSystems.01002-20.

[102] Kustatscher G, Grabowski P, Rappsilber J. Pervasive coexpression of spatially proximal 

genes is buffered at the protein level. Mol Syst Biol 2017;13:937. 

https://doi.org/10.15252/msb.20177548.

[103] Saccharomyces Genome Database | SGD n.d. https://www.yeastgenome.org/ (accessed 

January 20, 2021).

[104] Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics 2010;26:841–2. https://doi.org/10.1093/bioinformatics/btq033.

72

143

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

144

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[105] Krueger F, James F, Ewels P, Afyounian E, Weinstein M, Schuster-Boeckler B, et al. 

FelixKrueger/TrimGalore 2023. https://doi.org/10.5281/zenodo.7598955.

[106] Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon: fast and bias-aware 

quantification of transcript expression using dual-phase inference. Nat Methods 

2017;14:417–9. https://doi.org/10.1038/nmeth.4197.

[107] Lin P, Troup M, Ho JWK. CIDR: Ultrafast and accurate clustering through imputation for 

single-cell RNA-seq data. Genome Biol 2017;18:59. https://doi.org/10.1186/s13059-017-

1188-0.

[108] L. Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA 

sequencing data with many zero counts. Genome Biol 2016;17:75. 

https://doi.org/10.1186/s13059-016-0947-7.

[109] Lovell DR, Chua X-Y, McGrath A. Counts: an outstanding challenge for log-ratio analysis 

of compositional data in the molecular biosciences. NAR Genomics Bioinforma 

2020;2:lqaa040. https://doi.org/10.1093/nargab/lqaa040.

[110] Gene Ontology Resource. Gene Ontol Resour n.d. http://geneontology.org/ (accessed 

March 10, 2022).

[111] Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, Naldi A, et al.

GOATOOLS: A Python library for Gene Ontology analyses. Sci Rep 2018;8:1–17. 

https://doi.org/10.1038/s41598-018-28948-z.

[112] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing. J R Stat Soc Ser B Methodol 1995;57:289–300.

[113] Csardi G, Nepusz T. The Igraph Software Package for Complex Network Research. 

InterJournal 2005;Complex Systems:1695.

[114] Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function 

using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors. Proc. 7th Python Sci. 

Conf., Pasadena, CA USA: 2008, p. 11–5.

73

145

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

146

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


[115] Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene 

set enrichment analysis 2021:060012. https://doi.org/10.1101/060012.

[116] Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal 

enrichment tool for interpreting omics data. The Innovation 2021;2:100141. 

https://doi.org/10.1016/j.xinn.2021.100141.

[117] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-

014-0550-8.

[118] Shen X-X, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, et al. Tempo and 

Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 2018;175:1533-

1545.e20. https://doi.org/10.1016/j.cell.2018.10.023.

[119] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: 

architecture and applications. BMC Bioinformatics 2009;10:421. 

https://doi.org/10.1186/1471-2105-10-421.

[120] Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring 

semantic similarity among GO terms and gene products. Bioinformatics 2010;26:976–8. 

https://doi.org/10.1093/bioinformatics/btq064.

[121] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, 

Austria: R Foundation for Statistical Computing; 2017.

74

147

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

148

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/

