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Abstract 1 

Cells transcribe and translate thousands of noncanonical open reading frames (nORFs) whose 2 
impacts on cellular phenotypes are unknown. Here, we investigated nORF transcription, 3 
evolution, and potential cellular roles using a coexpression approach. We measured 4 
coexpression between ~6,000 nORFs and ~6000 canonical ORFs (cORFs) in the 5 
Saccharomyces cerevisiae genome by massively integrating thousands of RNA sequencing 6 
samples and developing a dedicated computational framework that accounts for low expression 7 
levels. Our findings reveal that almost all cORFs are strongly coexpressed with at least one 8 
nORF. However, almost half of nORFs are not strongly coexpressed with any cORFs and form 9 
entirely new transcription modules. Many nORFs recently evolved de novo in genomic regions 10 
that were non-coding in the Saccharomyces ancestor. Coexpression profiles suggest that half of 11 
de novo nORFs are functionally associated with conserved genes involved in cellular transport 12 
or homeostasis. Furthermore, we discovered that de novo ORFs located downstream of 13 
conserved genes leverage their neighbors’ transcripts resulting in high expression levels. Where 14 
a de novo nORF emerges could be just as important as its sequence for shaping how it can 15 
influence cellular phenotype. Our coexpression dataset serves as an unprecedented resource 16 
for unraveling how nORFs integrate into cellular networks, contribute to cellular phenotypes and 17 
evolve. 18 
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Introduction 19 

Eukaryotic genomes contain thousands of open reading frames (ORFs), including noncanonical 20 
ORFs (nORFs) that have long been considered unlikely to have any cellular roles1. Being very 21 
short and lacking evolutionary conservation, nORFs were historically excluded from genome 22 
annotations2,3. Yet the development of RNA sequencing (RNA-seq)4 and ribosome profiling5,6 23 
has shown genome-wide transcription and translation of nORFs in yeast5,7, zebrafish8, flies9, 24 
mammalian cell lines10,11 and in humans12–14. As a result, unraveling the cellular, physiological 25 
and evolutionary implications of nORFs' has become an active area of research7,15. 26 
 27 
There are two major obstacles to studying nORFs. The first is detection, as nORF expression 28 
levels are typically low and dependent on specific conditions16,17. However, it has been recently 29 
shown that massive integration of RNA-seq18,19 or ribosome profiling7 experiments is an 30 
effective way to overcome these detection issues. For example, Wacholder et al.7 recently 31 
discovered around 19,000 translated nORFs in Saccharomyces cerevisiae by massive 32 
integration of ribosome profiling data. This number is four times larger than the number of 33 
canonical ORFs (cORFs) annotated in the yeast genome, demonstrating the power of 34 
aggregating publicly available data for identifying translated nORFs. The second obstacle is 35 
biological interpretation. Transcription or translation of nORFs could be attributed to expression 36 
noise20,21 whereby non-specific binding of RNA polymerases and ribosomes to DNA and RNA 37 
might cause promiscuous transcription or translation, respectively. However, many studies have 38 
shown that nORFs can form stable peptides and affect phenotypes including cell growth22, cell 39 
cycle regulation23, muscle physiology24, and immunity25. These studies showed that there is a 40 
pool of nORFs whose expression is not mere noise and whose translation products are 41 
important for cellular life. 42 
 43 
Many translated nORFs have evolved de novo from previously non-coding loci16,26. However, 44 
how de novo ORFs gain the ability to be transcribed in the first place is unclear27. One 45 
possibility is that novel regulatory regions emerge alongside with the emergence of the ORF, 46 
enabling new ORFs to be regulated by their own regulatory landscape (ORF-first) as it was 47 
shown for de novo ORFs in Drosophila melanogaster28, codfish29, human17,30 and chimpanzee17. 48 
Alternatively, ORFs may emerge on actively transcribed loci such as long noncoding RNAs as it 49 
was shown for de novo ORFs in primates31 or upstream or downstream of transcripts containing 50 
genes30 (transcription-first)32–34. Transcriptional activation has a ripple effect causing 51 
coordinated activation of nearby genes35,36. Thus, de novo ORFs that emerge near established 52 
genes or regulatory regions may acquire the ability to be transcribed by ‘piggybacking’36 on the 53 
regulatory context of their established gene neighbors32,37.  54 
 55 
Research investigating the impacts of existing regulatory context on de novo ORF transcription 56 
has yielded conflicting results. For instance, Vakirlis et al.32 proposed that de novo ORFs 57 
located upstream of genes on the opposite strand tend to be transcribed from bi-directional 58 
promoters of genes and likely to be on nucleosome free regions (NFRs). However, Blevins et 59 
al.38 proposed the opposite, that de novo ORFs are more likely to overlap with genes on the 60 
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opposite strand. Thus, there is a need to systematically assess the impacts of existing 61 
regulatory context, e.g., the orientation and distance relative to a gene that a de novo ORF 62 
emerges on, on a de novo ORF’s transcriptional profile. Transcription is indeed the first step of 63 
expression that constrains where and when a de novo ORF might be translated and impact 64 
cellular functions.  65 
 66 
Coexpression networks, where nodes represent ORFs and edges represent high correlation 67 
between transcriptional profiles, have been used successfully to identify new gene function39,40, 68 
new disease-related genes41–43 and for studying the conservation of the regulatory 69 
machinery40,44 or gene modules45 between species. Based on the assumption that genes 70 
involved in similar pathways have correlated expression patterns, coexpression networks can 71 
reveal relationships between genes and other transcribed genetic elements46,47. Most 72 
coexpression studies have focused on cORFs but a few recent studies suggest that 73 
coexpression networks are a useful tool for investigating nORFs as well. For instance, Stiens et 74 
al.48 constructed a coexpression network for Mycobacterium tuberculosis to study unannotated 75 
transcripts and other studies have employed coexpression networks to study small ORFs in 76 
plants49,50. Work by Li et al.18 in S. cerevisiae showed that many transcribed nORFs form 77 
coexpression clusters. These studies underscore the utility of coexpression as a valuable 78 
approach for studying the biology of functional elements at the genome scale. 79 
 80 
The recent identification of nearly 19,000 translated nORFs in S. cerevisiae7 – which have the 81 
potential to generate peptides that affect cellular phenotypes but are almost entirely 82 
uncharacterized – provides an unprecedented opportunity to leverage coexpression for 83 
understanding nORF biology and evolution at scale. Here, we addressed the statistical 84 
challenges arising from the low expression of nORFs to build the first high-quality coexpression 85 
network spanning the canonical and noncanonical translatome of any species. 86 
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Results 87 

Massive integration of RNA-seq data shows noncanonical ORFs 88 

are poorly expressed yet are transcriptionally regulated 89 

 90 
Figure 1: Coexpression network including nORFs is biologically meaningful 91 
A) Workflow for creating expression dataset and coexpression analysis; 3,916 samples were 92 
analyzed to create an expression matrix for 11,630 ORFs, including 5,803 cORFs and 5,827 93 
nORFs; expression values were used to calculate the coexpression matrix using proportionality 94 
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metric, ⍴ and were normalized to correct for expression bias. The coexpression matrix was 95 
thresholded using ⍴ > 0.888 to create a coexpression network (top 0.2% of all pairs). B) 96 
Distribution of the number of ORFs binned based on their median expression values (y-axis) 97 
and the number of samples the ORFs were detected in with at least 5 raw counts (x-axis). C) 98 
Using annotated protein complexes51, coexpressed cORF pairs (⍴ > 0.888) are more likely to 99 
form protein complexes than non-coexpressed cORF pairs (Fisher’s exact test p < 2.2e-16). D) 100 
Using genome wide transcription factor (TF) binding profiles52, coexpressed ORF pairs (⍴ > 101 
0.888) are more likely to have their promoters bound by a common TF than non-coexpressed 102 
ORF pairs (Fisher’s exact test p < 2.2e-16). E) Hierarchical clustering of the coexpression matrix 103 
reveals functional enrichments for most clusters that contain at least 5 canonical ORFs; 104 
functional enrichments estimated by gene ontology enrichment analysis at FDR < 0.05 using 105 
Fisher’s exact test. 106 
 107 
To study coexpression at the translatome scale in S. cerevisiae, we considered all cORFs 108 
annotated as “verified”, “uncharacterized”, or “transposable element” in the Saccharomyces 109 
Genome Database (SGD)53, as well as all nORFs, annotated as “dubious” and “pseudogene” or 110 
those that were unannotated, with evidence of translation according to Wacholder et al.7 To 111 
maximize detection of transcripts containing nORFs, we integrated 3,916 publicly available 112 
RNA-seq samples from 174 studies (Figure 1A, Supplementary Data 1). Many nORFs were not 113 
detected in most of the samples we collected, creating a very sparse dataset (Figure 1B). The 114 
issue of sparsity has been widely studied in the context of single cell RNA-seq (scRNA-seq). A 115 
recent study looking at 17 measures of association for constructing coexpression networks from 116 
scRNA-seq showed that proportionality methods coupled with center log ratio (clr) 117 
transformation consistently outperformed other measures of coexpression in a variety of tasks 118 
including identification of disease-related genes and protein-protein network overlap analysis54. 119 
Thus, we used clr to transform the raw counts and quantified coexpression relationships using 120 
the proportionality metric, ⍴55.  121 
We further addressed the issue of sparsity with two sample thresholding approaches. First, any 122 
observation with a raw count below five was discarded, such that when calculating ⍴ only the 123 
samples expressing both ORFs with at least five counts were considered. Second, we 124 
empirically determined that a minimum of 400 samples were required to obtain reliable 125 
coexpression values by assessing the effect of sample counts on the stability of ⍴ values 126 
(Supplementary Figure 1).  127 
 128 
The combined use of clr, ⍴, and sample thresholding accounts for statistical issues in estimating 129 
coexpression deriving from sparsity, but the large difference in expression levels between 130 
cORFs and nORFs poses yet another challenge. Indeed, Wang et al. showed that the 131 
distribution of coexpression values is biased by the expression level of a given ORF pair56, 132 
where highly expressed genes also tended to be highly coexpressed due to statistical artifacts. 133 
Since nORFs are lowly expressed compared to cORFs, we observed this artifactual bias in our 134 
dataset (Supplementary Figure 2A). Therefore, we corrected this bias using spatial quantile 135 
normalization (SpQN) as recommended by Wang et al.56 (Supplementary Figure 2B). Because 136 
of both the coexpression metric used and the quantile normalization of the values, the 137 
distribution of ⍴ in our expanded coexpression matrix is not centered at zero. These steps 138 
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resulted in a 11,630 by 11,630 coexpression matrix (Supplementary Data 2), with 5,803 cORFs 139 
and 5,827 nORFs (Supplementary Data 3).  140 
 141 
We created a network representation of our coexpression matrix by considering only the top 142 
0.2% of ⍴ values between all ORF pairs (⍴ > 0.888). This threshold was chosen to include 90% 143 
of cORFs (Supplementary Figure 3). Altogether, our analysis resulted in an expanded 144 
coexpression network of 9,303 nodes (4,112 nORFs and 5,191 cORFs) and 124,382 edges 145 
(Figure 1A). 146 
 147 
To assess whether our expanded coexpression network captures meaningful biological and 148 
regulatory relationships, we examined its overlap with orthogonal datasets. Using a previously 149 
published51 curated protein complex dataset for cORFs, we found that coexpressed cORF pairs 150 
are significantly more likely to be in a protein complex together compared to non-coexpressed 151 
pairs (Odds ratio = 10.8 Fisher’s exact test p < 2.2e-16; Figure 1C). Using a previously 152 
published52 genome wide ChIP-exo dataset containing DNA-binding information for 73 153 
sequence-specific transcription factors (TFs), we observed that coexpressed ORF pairs were 154 
more likely to have their promoters bound by a common TF than non-coexpressed ORF pairs, 155 
whether the pairs consist of nORFs or cORFs (canonical-canonical pairs: Odds ratio = 4.28, 156 
canonical-noncanonical pairs: Odds ratio = 3.0, noncanonical-noncanonical pairs: Odds ratio = 157 
3.86, Fisher’s exact test p < 2.2e-16 for all three comparisons; Figure 1D). Using the WGCNA57 158 
method to cluster the weighted coexpression matrix, we found that more than half of the clusters 159 
identified contained functionally related ORFs (GO biological process enrichments at FDR < 160 
0.05; Figure 1E; Supplementary Figure 4). Altogether these analyses demonstrate the high 161 
quality of our expanded coexpression network and confirm that it captures meaningful biological 162 
relationships for both canonical and noncanonical ORFs.  163 
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nORFs tend to be located at the periphery of the coexpression 164 

network and form new noncanonical transcription modules 165 

 166 
Figure 2 nORFs have fewer connections yet coexpress with most cORFs and form new 167 
noncanonical transcription modules at the periphery of the coexpression network 168 
A) Visualization for canonical and expanded coexpression networks using spring embedded 169 
graph layout. Expanded network contains more cORFs than the canonical only network since 170 
addition of nORFs also results in addition of many cORFs that are only connected to an nORF. 171 
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B) nORFs have fewer coexpression partners (degree in expanded network) than cORFs (Mann-172 
Whitney U-test p < 2.2e-16). C) Most cORFs are coexpressed with at least one nORF. D) 59% 173 
of nORFs are coexpressed with at least one cORFs and this is less than expected by chance 174 
(Fisher’s exact test p < 2.2e-16). E) Addition of nORFs to the canonical network results in the 175 
expanded network being less dense, whereas the opposite is expected by chance, shown by 176 
the decrease in diameters for the 1,000 randomized networks. F) Addition of nORFs to the 177 
canonical network decreases local clustering in the expanded network, however this is to a 178 
lesser extent than expected by chance as shown by the distribution for the 1,000 randomized 179 
networks. G) Distribution of coexpression matrix cluster composition by WGCNA shows that 180 
most clusters are formed either by primarily nORFs or primarily cORFs (n= 69 clusters, green 181 
represents nORF majority clusters, purple represents cORF majority clusters).  182 
 183 
We sought to investigate how the expanded coexpression network differs from the canonical 184 
coexpression network, which only contains cORFs and has 42,205 edges (Figure 2A). On 185 
average, nORFs have fewer coexpressed partners (degree) than cORFs, suggesting that 186 
nORFs have distinct transcriptional profiles (Cliff’s Delta d = -0.29, Mann-Whitney U-test p < 187 
2.2e-16, Figure 2B). We found that 91% of cORFs are coexpressed with at least one nORF (n = 188 
4,726, Figure 2C), whereas only 59% of nORFs are coexpressed with at least one cORF. In 189 
contrast, we would have expected an average of 89% of nORFs to be coexpressed with a cORF 190 
according to degree preserving simulations of 1,000 randomized networks where edges from 191 
nORFs were shuffled (Odds ratio = 0.174, Fisher’s exact test p < 2.2e-16, Figure 2D; 192 
Supplementary Figure 5). The randomized networks further helped us to confirm that the 193 
changes we observed when comparing the canonical and expanded networks were biologically 194 
meaningful and not a mere consequence of having a larger network. We analyzed two network 195 
properties for this purpose: diameter, which is the longest shortest path between any two ORFs, 196 
and transitivity, which is the tendency for ORFs that are coexpressed with a common neighbor 197 
to also be coexpressed with each other. The diameter of the randomized networks decreased 198 
upon the addition of nORFs, indicating a denser network when connections are random. This is 199 
in sharp contrast to the expanded network, where the addition of nORFs led to a larger diameter 200 
(Figure 2E). The network is thus much less dense compared to the canonical network and what 201 
would be expected by chance suggesting that nORFs tend to be located at the periphery of the 202 
network. Moreover, the transitivity of the expanded network decreased with the addition of 203 
nORFs compared to the canonical network but was higher than in the randomized networks, 204 
indicating that nORFs' connections create a more clustered network structure than expected by 205 
chance (Figure 2F). To further investigate this result, we inspected the ratio of nORFs and 206 
cORFs among the cluster assignments from WGCNA hierarchical clustering (Supplementary 207 
Figure 4). Strikingly, we observed a bimodal distribution of network clusters, with approximately 208 
half of the clusters consisting mostly of nORFs and the other half containing mostly cORFs 209 
(Figure 2G). Overall, our findings suggest that nORFs exhibit distinct expression patterns 210 
compared to cORFs but share well-structured coexpression relationships among themselves, 211 
leading to both integration within existing transcriptional modules as well as the creation of new 212 
ones.  213 
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Coexpression profiles reveal associations between de novo ORFs 214 

and specific cellular processes 215 

 216 
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Figure 3 More than half of nORFs evolved de novo and are associated with specific 217 
cellular processes as revealed by coexpression relationships 218 
A) Pipeline used to reclassify ORFs as conserved or de novo. cORFs were considered for both 219 
conserved and de novo classification while nORFs were only considered for de novo 220 
classification. Conserved ORFs were determined by either detection of homology outside of 221 
Saccharomyces or reading frame conservation (top). De novo ORFs were determined by 222 
evidence of translation, lack of homology outside of Saccharomyces as well as lack of a 223 
homologous ORF in the two most distant Saccharomyces branches. B) Counts of cORFs and 224 
nORFs that were found de novo. C-D) GO terms that proportionally have more (C) (Odds ratio > 225 
2, n=17 terms) or less (D)(Odds ratio < 0.5, n=23 terms) GSEA enrichments with de novo ORFs 226 
compared to conserved ORFs (y-axis ordered by de novo ORF enrichment proportion from 227 
highest to lowest, FDR < 0.001 for all terms, Fisher’s exact test). E-F) The top 100 coexpression 228 
partners of de novo cORF YBR196C-A colored by biological process (E) or cellular component 229 
annotations (F).  230 

To define which ORFs in our dataset were evolutionarily conserved and which were of recent de 231 
novo evolutionary origins, we developed a multistep pipeline combining sequence similarity 232 
searches and syntenic alignments (Figure 3A). ORFs were considered conserved if they had 233 
homologues detectable by sequence similarity in budding yeasts outside of the Saccharomyces 234 
genus or if their reading frames were maintained within the Saccharomyces genus. ORFs were 235 
considered de novo if they lacked homologues detectable by sequence similarity outside of the 236 
Saccharomyces genus and if less than 60% of syntenic orthologous nucleotides in the two most 237 
distant Saccharomyces branches were in the same reading frame as in S. cerevisiae. These 238 
analyses identified 5,624 conserved cORFs and 2,756 de novo ORFs including 77 de novo 239 
cORFs and 2,679 de novo nORFs (Figure 3B). 240 

To determine whether de novo ORFs might be associated with specific cellular processes, we 241 
performed gene set enrichment analyses58 (GSEA) on the coexpression profiles with cORFs for 242 
all conserved and de novo ORFs in our coexpression matrix. GSEA takes an ordered list of 243 
genes, in this case sorted by coexpression level, and seeks to find if those genes placed 244 
primarily in front of the ordered list are annotated with specific GO terms. For each conserved 245 
and de novo ORF, GSEA allowed us to detect if an ORF’s highly coexpressed partners are 246 
significantly associated with any GO terms (Supplementary Figure 6). We then calculated, for 247 
each GO term, the number of conserved and de novo ORFs that had GSEA enrichments at 248 
FDR < 0.01 (Supplementary Data 4). These analyses identified 17 specific GO terms that are 249 
more prevalent among the coexpression partners of de novo ORFs relative to those of 250 
conserved ORFs (Figure 3C, FDR < 0.001, Odds ratio > 2, Fisher's exact test, Supplementary 251 
Data 5). Homeostatic process (GO:0042592) had the highest proportion of de novo ORFs 252 
enrichments with 51% (n=1416) followed by ion transport (GO:0006811, 47%), transmembrane 253 
transport (GO:0055085, 44%) as well as other transport-related processes, metabolic 254 
processes, or response to stressors such as oxidative or osmotic stresses. We additionally 255 
found 23 terms that are less likely to be among coexpression partners of de novo ORFs (FDR < 256 
0.001, Odds ratio < 0.5, Fisher's exact test). These terms were related to a variety of processes 257 
such as protein modifications, cellular growth, or RNA processing (Figure 3D, Supplementary 258 
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Data 5). These results suggest that de novo ORF expression is regulated by transcriptional 259 
programs.  260 

We found the enrichment of transport-related GO terms particularly interesting. Ion transport, 261 
transmembrane transport, amino acid transport and carbohydrate transport, all had odds ratio > 262 
2. Almost half (n=1,289, 47%) of de novo ORFs tend to have higher coexpression with the 263 
cORFs annotated for the parent ‘transport’ GO term (GO:0006810, GSEA FDR < 0.01). Among 264 
these 1,289 transport-enriched de novo ORFs, 31 were cORFs, which allowed us to search 265 
literature to find orthogonal evidence for their role in transport. Four de novo cORFs, YIR020C, 266 
YLR406C-A, YEL068C and YBR196C-A, were previously found to be localized22,59 to the 267 
endoplasmic reticulum (ER) or the vacuole. Our GSEA enrichments and their localizations 268 
suggest that they might be involved in transport at these organelles.   269 

YBR196C-A was previously described as an example of de novo ORF that is adaptive when 270 
overexpressed and integrates into the membrane of the endoplasmic reticulum.22 Coexpression 271 
relationships in our matrix showed GSEA enrichments for YBR196C-A in transmembrane 272 
transport (GO:0055085, FDR = 1.95e-03), ion transport (GO:0006811, FDR = 1.46e-05), Golgi-273 
vesicle transport (GO:0048193, FDR = 5.56e-04), vesicle-mediated transport (GO:0016192, 274 
FDR = 1.82e-07), and endosomal transport (GO:0016197, FDR = 5.01e-03, Supplementary 275 
Figure 7). Out of the top 100 ORFs coexpressed with YBR196C-A, 33 were involved in various 276 
biological processes related to membranes (Figure 3E) and 70 were annotated with membrane 277 
localization (FDR = 7.7e-13, Fisher’s exact test) including 39 with ER membrane (FDR = 7.21e-278 
12, Fisher’s exact test, Figure 3F). Overall, the results from our coexpression matrix suggest 279 
that the expression of de novo ORFs is associated with a diverse set of cellular processes and 280 
around half of de novo ORFs are associated with the transcriptional programs regulating 281 
transport and homeostasis. 282 
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de novo ORF expression and regulation are shaped by genomic 283 

location 284 

 285 
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Figure 4 Genomic orientation influences the expression and potential cellular roles of de 286 
novo ORFs 287 
A) Possible genomic orientations of de novo ORFs relative to neighboring conserved ORFs 288 
within 500bp. ORFs that are further away than 500bp are classified as independent. B) Counts 289 
of de novo ORFs that are within 500 bp of a conserved ORF in different genomic orientations 290 
(dashed box represents subgroups that were used for panels C and D). C) Expression level 291 
(median TPM across all RNA-seq samples) of de novo ORFs is influenced by distance and 292 
genomic orientation (considering only ORFs in a single orientation, dashed box in panel B, R: 293 
Spearman’s correlation coefficient and p: p value for significance of correlation). D) De novo 294 
ORFs located downstream on the same strand as conserved ORFs have the highest expression 295 
among different orientations (considering only ORFs in only a single orientation, dashed box in 296 
panel B). E) Down same de novo ORFs tend to be highly coexpressed with their neighbors; 297 
background: de novo-conserved ORF pairs located on different chromosomes. F) Down same 298 
de novo ORFs tend to be coexpressed with cORFs associated with similar biological processes 299 
as the cORFs that are coexpressed with their neighbors; similarity measured by calculating 300 
semantic similarity between GSEA enrichments for neighboring de novo-conserved ORF pairs 301 
using relevance metric. (0 = no similarity, 1 = perfect overlap) (Mann-Whitney U-test, ****: p ≤ 302 
0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05, ns: not-significant, +: small effect size (Cliff’s d < 303 
.33), ++: medium effect size (Cliff’s d < .474), +++: large effect size (Cliff’s d ≥ .474)) 304 
 305 
Having shown that many of these nORFs are evolutionarily young with de novo origins and yet 306 
are transcribed, translated, and exhibit biologically coherent coexpression patterns with cORFs, 307 
we investigated how the genomic locus where a de novo ORF emerges influences its potential 308 
evolutionary path and integration into the cellular network.  309 
 310 
We categorized de novo ORFs based on their positioning relative to neighboring conserved 311 
ORFs. The de novo ORFs that were not within 500 bp of a conserved ORF were classified as 312 
independent. The remaining de novo ORFs were categorized as either upstream or downstream 313 
on the same strand (up same or down same), upstream or downstream on the opposite strand 314 
(up opposite or down opposite), or as overlapping on the opposite strand (anti-sense overlap) 315 
based on their orientation to nearest conserved ORF (Figure 4A-B).  316 
 317 
We investigated how orientation and distance from a conserved ORF influence the expression 318 
of de novo ORFs, by restricting our analyses to those de novo ORFs assigned to only a single 319 
orientation (dashed box in Figure 4B). We found that the ORFs located on the same strand as 320 
their neighboring conserved ORFs exhibit a negative correlation in expression with their 321 
distance to their conserved neighbors, while those located on the upstream on the opposite 322 
strand have a positive correlation on their expression. (up same: R = -0.24, p = 3.1e-6; down 323 
same: R = -0.39, p = 2e-8; up opposite: R = 0.2, p = 0.016; Spearman’s Correlation Coefficient, 324 
Figure 4C). Transcription of the neighboring conserved ORFs seems to enhance the 325 
transcription of nearby de novo ORFs on the same strand possibly through piggybacking, while 326 
has an inhibiting effect for de novo ORFs on the opposite strand possibly through transcriptional 327 
interference.  328 
 329 
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Generally, down same de novo ORFs display significantly higher expression levels compared to 330 
independent de novo ORFs (Cliff’s Delta d = 0.58, Mann-Whitney U-test, p < 2.2e-16) as well as 331 
to de novo ORFs in other orientations (Figure 4D). In contrast, antisense overlap and up 332 
opposite de novo ORFs have significantly lower expression levels than independent de novo 333 
ORFs (antisense overlap: Cliff’s Delta d = -0.52, p < 2.2e-16; up opposite: Cliff’s Delta d = -0.22, 334 
p = 2.6e-4; Mann-Whitney U-test). We did not observe any expression differences between 335 
down opposite or up same ORFs compared to independent de novo ORFs.  336 
 337 
Distance negatively influenced coexpression in an orientation dependent manner, except for 338 
down opposite ORFs (Supplementary Figure 8). To further investigate this, we examined 339 
whether neighboring pairs of de novo-conserved ORFs exhibited higher coexpression compared 340 
to a background distribution based on randomly selected de novo-conserved ORF pairs located 341 
on separate chromosomes (Figure 4E). Down same de novo ORFs showed the largest increase 342 
in coexpression with neighboring conserved ORFs compared to background pairs (Cliff’s Delta 343 
d = 0.64, Mann-Whitney U-test, p < 2.2e-16), while up opposite and up same de novo ORFs 344 
had small increases in coexpression with neighboring conserved ORFs (up opposite: Cliff’s 345 
Delta d = 0.28; up same: Cliff’s Delta d = 0.32; Mann-Whitney U-test, p < 2.2e-16 for both 346 
comparisons, Figure 4E). Despite showing an increase in coexpression with nearby conserved 347 
ORFs, the de novo ORFs did not exhibit the strongest coexpression with their immediate 348 
neighboring conserved ORFs, i.e., neighboring conserved ORFs were only rarely (6%, n=240) 349 
in the top 10 coexpressed ORFs (15% of down same, 4.5% of up same, 3% of up opposite and 350 
1 % of anti-sense overlap). To explore the implications of these observations, we compared the 351 
biological processes associated by coexpression of each de novo ORF to those of their 352 
neighboring conserved ORFs (Figure 4F). To calculate biological process similarity between two 353 
ORFs, we used significant GO terms at FDR<0.01 determined by GSEA for each ORF and 354 
calculated similarity between these two sets of GO terms using the relevance method.60 If two 355 
ORFs are enriched in same specialized terms, their relevance metric would be higher and if 356 
they are enriched in different terms or same but generic terms, their relevance would be lower. 357 
We found that de novo ORFs in the down same and up same orientations are significantly more 358 
likely to share similar biological process enrichments with neighboring conserved ORFs than 359 
background ORF pairs (Cliff’s Delta d = 0.5 and d = 0.17, respectively, Mann-Whitney U-test, p-360 
value < 2.2e-16 for both) and pairs in other orientations.  361 
Overall, these results show that de novo ORFs located downstream on the same strand as 362 
conserved ORFs exhibit higher expression levels as well as higher coexpression and functional 363 
similarity with their neighboring conserved ORF than de novo ORFs that are located further 364 
away or in other orientations365 
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Sharing a transcript is a major piggybacking mechanism for de 366 

novo ORFs located near conserved ORFs  367 

 368 
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Figure 5 Down same de novo ORFs are positioned advantageously to share transcripts 369 
with neighboring conserved ORFs 370 
A) De novo ORFs that share a transcript with neighboring conserved ORFs, as determined by 371 
TIF-seq transcript boundaries, have significantly higher expression levels than de novo ORFs 372 
that do not. Dashed line represents the median expression of independent de novo ORFs. 373 
Down same and up same de novo ORFs are compared. B) De novo ORFs that share a 374 
transcript with neighboring conserved ORFs have higher coexpression with their neighbors than 375 
de novo ORFs that do not share a transcript. Down same and up same de novo ORFs are 376 
compared. Dashed line represents median coexpression of de novo-conserved ORF pairs on 377 
separate chromosomes. C) De novo ORFs that share a transcript have more similar functional 378 
enrichments with neighboring conserved ORFs than de novo ORFs that do not share a 379 
transcript. Down same and up same de novo ORFs are compared. Dashed line represents 380 
median functional enrichment similarities of the background distribution of de novo-conserved 381 
ORF pairs on separate chromosomes. D) Down same de novo ORFs share a transcript with 382 
neighboring conserved ORFs more often than up same ORFs. E) Conserved ORFs with 383 
downstream de novo ORFs have a small but significant increase in expression compared to 384 
conserved ORFs with upstream de novo ORFs. F) Loci where transcription termination factors 385 
Pcf11 and Nrd1 are not present between a conserved ORF and neighboring down same de 386 
novo ORF are more likely to share a transcript than loci where termination factors are present. 387 
G) Transcript isoforms (black) at an example locus where there are no transcription termination 388 
factors present between conserved ORF YBL015W (pink) and downstream de novo ORF 389 
chr2_195794 (blue). H) Transcript isoforms (black) at an example locus where there is Pcf11 390 
transcription terminator present (red line) between conserved ORF YIL090W (pink) and 391 
downstream de novo ORF chr9_195520 (blue).  392 
(****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05, ns: not-significant; Mann-Whitney U-test) 393 
 394 
De novo ORFs that are located downstream of conserved ORFs may be in an advantageous 395 
location, as they exhibit increased expression, coexpression, and functional enrichment with 396 
neighboring conserved ORF. We hypothesized that the molecular mechanism resulting in these 397 
increases is transcriptional read-through which leads to de novo ORFs sharing a transcript with 398 
their neighboring conserved ORFs. To test this hypothesis, we analyzed publicly available 399 
transcript isoform sequencing (TIF-seq) data61. Of the ORF pairs that were detected using TIF-400 
seq, we found that 84% of down same and 64% of up same de novo ORFs share at least one 401 
transcript with their neighboring conserved ORFs. For both orientations, de novo ORFs that 402 
share at least one transcript with neighboring conserved ORFs have a significantly higher 403 
median expression level compared to de novo ORFs that do not (down same Cliff’s Delta d = 404 
0.75, p = 1.06e-8, up same: Cliff’s Delta d = 0.38, p = 1.23e-7; Mann-Whitney U-test, Figure 405 
5A). We also observed a significant increase in coexpression and biological process enrichment 406 
similarity between de novo ORFs and their neighboring conserved ORFs when they are found 407 
on the same transcript at least once compared to when they are not (coexpression: down same: 408 
Cliff’s Delta d = 0.28, Mann-Whitney U-test, p = 2.99e-9; up same: Cliff's Delta d = 0.31, Mann-409 
Whitney U-test, p < 2.2e-16; BP enrichment similarity: down same: Cliff’s Delta d = 0.21, Mann-410 
Whitney U-test, p = 1.49e-5; up same: Cliff’s Delta d = 0.108, Mann-Whitney U-test, p = 3.78e-411 
3, Figures 5B and 5C, respectively). While sharing a transcript led to increases for both up same 412 
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and down same orientations, down same ORFs that share a transcript have much higher 413 
expression, as well as coexpression and biological process enrichment similarity with their 414 
conserved neighbor, compared to up same ORFs that share a transcript. This could be due to 415 
down same ORFs’ tendency to share transcripts more often than up same ORFs (Cliff’s Delta d 416 
= 0.26, Mann-Whitney U-test p < 2.2e-16; Figure 5D) and the slightly higher expression of 417 
conserved ORFs with down same ORFs on their transcripts than conserved ORFs with up same 418 
ORFs on their transcripts (Cliff’s Delta d = 0.19, Mann-Whitney U-test, p = 4.29e-3; Figure 5E). 419 
 420 
Additionally, we examined the impact of transcription terminators Pcf11 or Nrd1 on the 421 
frequency of transcript sharing between a conserved ORF and its downstream de novo ORF. 422 
Analyzing publicly available ChiP-exo data52, we found that ORF pairs lacking transcriptional 423 
terminators had a notably higher percentage of shared transcripts than those with a 424 
transcriptional terminator (Cliff’s Delta d = 0.39, Mann-Whitney U-test, p = 1.591e-10, Figure 425 
5F). Therefore, we conclude that sharing a transcript via transcriptional readthrough is a major 426 
transcriptional piggybacking mechanism for down same de novo ORFs.  427 
 428 
As an illustration, consider the genomic region on chromosome II from bases 194,000 to 429 
196,000, containing the conserved ORF YBL015W and a downstream de novo ORF (positions 430 
195,794 to 195,847). No terminator factor is bound to the intervening DNA between these two 431 
ORFs. This pair has high coexpression, with ⍴ = 0.96 and we observed that nearly all transcripts 432 
in this region containing the de novo ORF also include YBL015W (Figure 5G). In contrast, the 433 
genomic region on chromosome XVI from 639,000 to 641,800, containing the conserved ORF 434 
YPR034W and downstream de novo ORF (positions 641,385 to 641,534), does have a Pcf11 435 
terminator factor between the pair, and as expected, none of the transcripts in this region 436 
contain both YPR034W and the de novo ORF, which have poor coexpression as a result (⍴ = 437 
0.1, Figure 5H) 438 
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Discussion 439 

In this study we built a high quality expanded coexpression network including both cORFs and 440 
nORFs in S. cerevisiae by integrating thousands of publicly available RNA-seq samples. Our 441 
goal was to analyze the transcription profiles of nORFs, whose low expression creates statistical 442 
issues. We utilized a dedicated statistical approach which enabled us to uncover expression 443 
and coexpression patterns for thousands of nORFs despite their low expression. While previous 444 
studies have used coexpression to investigate nORFs and their cellular roles in various 445 
species48–50, our study represents a significant technical advancement in that it is the first to 446 
combine thousands of RNA-seq samples with computational methods that account for sparsity 447 
and low expression levels when calculating coexpression55,56.  448 

We explored the transcription of nORFs from multiple angles including analyzing network 449 
topology, conducting evolutionary analyses, investigating associations with cellular processes, 450 
and examining the influence of genomic orientation on expression. Delving into network 451 
topology, we find that nORFs have distinct expression profiles that are correlated with only a 452 
few other ORFs. Nearly all cORFs are coexpressed with at least one nORF, but the converse is 453 
not true. Numerous nORFs form new structured transcriptional modules, possibly involved in 454 
both known and unknown cellular processes.  455 

Next, we investigated the evolutionary origins of all ORFs in the expanded network. Similar to 456 
previous reports, we found that many nORFs have evolved de novo from previously non-genic 457 
regions16. We leveraged the expanded coexpression network to generate hypotheses about the 458 
potential cellular roles of de novo ORFs. We discovered that half of de novo ORFs tend to show 459 
higher coexpression with cORFs that are involved in homeostasis and transport, which could 460 
mean they are also involved in such processes. While future studies will be needed to test these 461 
hypotheses since nORFs are entirely uncharacterized, there are several consistent 462 
observations in the literature18,38,62. For instance, Li et al.18 showed that many de novo ORFs are 463 
upregulated in heat shock. Wilson and Masel63 found higher translation of de novo ORFs under 464 
starvation conditions. Carvunis et al.16 found de novo cORFs are enriched for the GO term 465 
‘response to stress’. Other studies showed examples of how de novo ORFs could be involved in 466 
stress response29,64 or homeostasis64,65. For instance the de novo antifreeze glycoprotein AFGP 467 
allows Arctic codfish to live in colder environments29 or MDF1 in yeast, provides resistance to 468 
certain toxins and mediates ion homeostasis66. When combined with these previous 469 
investigations, our results provide further evidence that de novo ORFs may provide adaptation 470 
to environmental stresses and help maintain homeostasis, perhaps through modulation of 471 
transport processes.  472 

Recent research in yeast has revealed a significant enrichment of transmembrane domains16,22 473 
(TMDs) within putative peptides of de novo ORFs, suggesting an association with cellular 474 
membranes. Notably, many studies identified de novo ORFs in yeast22,59 and small nORFs in 475 
humans14,67 that localize to diverse cellular membranes, such as ER, vacuole, endosome, or 476 
mitochondria. These findings have raised the possibility that de novo ORFs could play a role in 477 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.533058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533058
http://creativecommons.org/licenses/by/4.0/


 

20 

a range of transport processes, such as ion, amino acid, and protein transport across cellular 478 
membranes. Despite these observations, the precise functional relationship between de novo 479 
ORFs and transport processes remains unclear. In this context, our study provides the first 480 
evidence of a large-scale association between the expression of de novo ORFs and cellular 481 
transport. However, given the complex nature of transport processes, further experimental 482 
validations are warranted to elucidate the underlying molecular mechanisms that may be 483 
involved. Nevertheless, our results underscore the potential importance of de novo ORFs in 484 
cellular transport processes, and could pave the way for future investigations into their 485 
functional roles in this context. 486 

Lastly, we conducted a comparative analysis to examine how different genomic orientations of 487 
de novo ORFs could affect their expression and coexpression. We found that de novo ORFs 488 
located downstream on the same strand as conserved ORFs exhibit large increases in 489 
expression, coexpression, and biological process similarity with their neighboring conserved 490 
ORFs compared to ORFs in other orientations. The underlying mechanism that facilitates this 491 
increase is transcriptional readthrough leading to de novo ORFs sharing a transcript with their 492 
neighboring conserved ORF. These findings suggest that certain genomic regions may provide 493 
a more favorable environment for the transcription of de novo ORFs. A previous study in 494 
humans showed that readthrough transcription downstream of some genes is responsible for 495 
roughly 15%–30% of intergenic transcription and is induced by osmotic and heat stress creating 496 
extended transcripts with chromatin localization that play a role in maintaining nuclear stability 497 
during stress68. Another study in humans and zebrafish showed that the translation of small 498 
ORFs located in the 3' UTR of mRNAs (dORFs) increased the translation rate of the upstream 499 
gene69. These examples suggest that the transcription of regions downstream of conserved 500 
ORFs is functional and regulated. 501 

Our study could change our understanding of how the down same de novo ORFs gain cellular 502 
roles. When an ORF emerges downstream of a conserved ORF, it is more likely that RNA 503 
polymerase will continue transcribing over the length of the ORF, generating transcripts that 504 
contain both the de novo ORF and the conserved ORF, and perhaps in turn facilitate translation 505 
of the de novo ORF. This is particularly true when transcription terminators are absent, allowing 506 
for uninterrupted transcription. This transcription, which is presumably under the regulation of 507 
the conserved ORF, creates a pool of transcripts that evolution can select for or against. The 508 
likelihood of a de novo ORF being expressed or repressed under the same conditions as the 509 
neighboring ORF is largely determined by the extent to which it piggybacks on the neighboring 510 
ORF's transcription. Therefore, in addition to the evolutionary pressure acting on the sequence 511 
of emerging ORFs, our results suggest that transcriptional regulation and genomic context also 512 
play crucial roles in determining their functional potential. 513 

 514 
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Methods 515 

Creating ORF list 516 

To create our initial ORF list, we utilized two sources. First, we took annotated ORFs in the S. 517 
cerevisiae genome R64-2-1 from SGD on April 23, 2020, which included 6,600 ORFs. Second, 518 
we utilized the translated ORF list from Wacholder et al.7 reported in their Supplementary Table 519 
3. We filtered to include canonical ORFs (Verified, Uncharacterized or Transposable element 520 
genes) as well as any noncanonical ORFs with evidence of translation at q value < 0.05 521 
(Dubious, Pseudogenes and unannotated ORFs). We removed ORFs with lengths shorter than 522 
the alignment index kmer size of 25nt used for RNA-seq alignment. In situations where ORFs 523 
overlapped on the same strand with greater than 75% overlap of either ORF, we removed the 524 
shorter ORF. We removed ORFs that were exact sequence duplicates of another ORF. This left 525 
5,878 canonical and 18,636 noncanonical ORFs, for a total of 24,514 ORFs used for RNA-seq 526 
alignment.  527 

RNA-seq data preprocessing 528 

Strand specific RNA-seq samples were obtained from the Sequencing Read Archive (SRA) 529 
using the search query (saccharomyces cerevisiae[Organism]) AND rna sequencing. Each 530 
study was manually inspected and only studies that had an accompanying paper or detailed 531 
methods on Gene Expression Omnibus (GEO) were included. Samples were aligned to the 532 
ORF list explained above and quantified using Salmon70 version 0.12.0 and an index kmer size 533 
of 25. Samples with less than 1 million reads mapped or unstranded samples were removed, 534 
resulting in an expression dataset of 3,916 samples from 174 studies. ORFs were removed to 535 
limit sparsity and increase the number of observations in the subsequent pairwise coexpression 536 
analysis. Only ORFs that had at least 400 samples with a raw count > 5 were included for 537 
downstream coexpression analysis, n = 11,630 ORFs (5,803 canonical and 5,827 538 
noncanonical). 539 

Coexpression calculations 540 

The raw counts were transformed using centered log ratio (clr). Pairwise proportionality was 541 
calculated using ⍴55 for each ORF pair and only the pairs with at least 400 observations were 542 
included, i.e., ORFs that had at least 400 samples with greater than 5 raw counts for both 543 
ORFs. Spatial quantile normalization (SpQN)56 of the coexpression network was performed 544 
using the mean clr expressions values for each ORF as confounders to correct for mean 545 
expression bias, which resulted in similar distributions of coexpression values across varying 546 
expression levels. 547 
 548 
Since zero values cannot be used with log ratio transformations, all zeros must be removed 549 
from the dataset. Proposed solutions in the literature on how to remove zeros, all of which have 550 
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their cons, include removing all genes that contain any zeros, imputing the zeros, or adding a 551 
pseudo count to all genes71,72. Removing all ORFs that contain any zeros is not possible for this 552 
analysis since the ORFs of interest are lowly and conditionally expressed. The addition of 553 
pseudocounts can be problematic when dealing with lowly expressed ORFs, for the addition of 554 
a small count is much more substantial for an ORF with a read count of 5 compared to an ORF 555 
with a read count of 10073. For these reasons, all raw counts below 5 were set to NA prior to clr 556 
transformation. These observations are then excluded when calculating the clr transformation 557 
and in the ⍴ calculations. 558 
We used clr and ⍴ implementations in R package Propr55 and implementation of SpQN from 559 
Wang et al. (2022)56.  560 

Sample thresholding 561 

To determine the minimum number of samples needed expressing both ORFs in a pair we 562 
determined the number of samples needs for coexpression values to converge within ⍴ ± 0.05 563 
or ⍴ ± 0.1 for 2,167 nORF-cORF pairs which have a ⍴ > 99th percentile (before SpQN). All 564 
samples expressing both ORFs in a pair were randomly binned into groups of 10, and ⍴ was 565 
calculated after each addition of another sample. Fluctuations were calculated as max(⍴)-min(⍴) 566 
within a sample bin. Convergence was determined as the first sample bin with fluctuations ≤ 567 
fluctuation threshold, either 0.05 or 0.01.  568 
 569 

Transcription factor binding enrichments 570 

A ChIP-exo dataset from Rossi et al.52 containing DNA-binding information for 73 sequence-571 
specific transcription factors (TFs) across the whole genome was used. For each ORF we 572 
identified which TFs had binding within 200 bp upstream of the ORF’s transcription start site 573 
(TSS).  574 
The transcription start site (TSS) for all ORFs in the coexpression matrix was determined by the 575 
median 5’ TIF start using TIF-seq61 dataset. If no transcript containing the ORF was found in the 576 
TIF-seq data, then the median distance from ATG to TSS for all other ORFs is used to infer the 577 
TSS for the given ORF.  578 
To calculate enrichments, the coexpression matrix was first filtered to only include ORFs that 579 
have at least 1 TF binding within 200 bp upstream of its TSS (n = 1,909). Fisher’s exact test 580 
was used to calculate association between coexpression and sharing a TF. Coexpressed was 581 
defined as ⍴ > 0.888. 582 

Protein Complex enrichments 583 

A manually curated list of 408 protein complexes in S. cerevisiae was retrieved from the 584 
CYC2008 database by Pu et al51. The coexpression matrix was subsetted to contain only the 585 
1,617 cORFs found in the CYC2008 database prior to creating the contingency table. 586 
Coexpressed was defined as ⍴ > 0.888. Fisher’s exact test was used to calculate the 587 
significance of association between coexpression and protein complex formation.  588 
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Coexpression matrix clustering 589 

We used a package called weighted gene coexpression network analysis (WGCNA)57 in R to 590 
cluster our coexpression matrix. To do this, we first transformed our coexpression matrix into a 591 
weighted adjacency matrix by applying a process called soft thresholding. Soft thresholding 592 
involved raising the coexpression matrix to the power of 12, which removed weak coexpression 593 
relationships from the matrix. We then used the topological overlap matrix (TOM) similarity to 594 
calculate the distances between each column and row of the matrix. Using the hclust function in 595 
R with the ward clustering method, we created a hierarchical clustering dendrogram. We then 596 
used the dynamic tree cutting method within the WGCNA package to assign ORFs to 597 
coexpression clusters, resulting in 73 clusters of which 69 were mapped to the expanded 598 
coexpression network. 599 

Gene ontology analysis of clusters 600 

GO trees (file: go-basic.obo) and annotations (files: sgd.gaf) were downloaded from 601 
http://geneontology.org/ on March 10, 2022. We used the Python package, GOATools74, to 602 
calculate the number of genes associated with each GO term in a cluster and the overall 603 
population of (all) genes in the coexpression matrix. We excluded annotations based on the 604 
evidence codes ND (no biological data available). We identified GO term enrichments by 605 
calculating the likelihood of the ratio of the cORFs associated with a GO term within a cluster 606 
given the total number of cORFs associated with the same GO term in the background set of all 607 
cORFs in the coexpression matrix. We applied Fisher’s exact test and Benjamini-Hochberg 608 
false discovery rate (FDR)75 multiple testing correction to calculate corrected p-values for the 609 
enrichment of GO term in the clusters. FDR < 0.05 was taken as a requirement for significance. 610 
We applied GO enrichment calculations only when there were at least 5 canonical ORFs in the 611 
cluster. 612 

Network analyses 613 

To create random networks while preserving the same degree distribution, we used an edge 614 
swapping method (Supplementary Figure 4). This involved randomly selecting two edges in the 615 
network, which were either cORF-nORF or nORF-nORF edges, and swapping them. The swap 616 
was accepted only if it did not disconnect any nodes from the network and the newly generated 617 
edges were not already present in the network. We repeated this process for at least ten times 618 
the number of edges in the network. Network diameter and transitivity were calculated using R 619 
package igraph76 and networks were plotted using spring embedded layout in Python package 620 
networkx77.  621 

Gene set enrichment analysis 622 

Gene set enrichment analysis (GSEA) calculates gene ontology (GO) enrichments of an 623 
ordered list of genes. For each ORF in our dataset, we used ⍴ values to order annotated ORFs 624 
and provided this sorted set to GSEA software. We used the GO slim file downloaded from 625 
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Saccharomyces Genome Database (SGD) on 20 January 2021 for GO annotations and fgsea78 626 
R package to calculate enrichments. To calculate GO terms that are enriched or depleted for de 627 
novo ORFs compared to conserved ORFs, we calculated the number of conserved and de novo 628 
ORFs that had GSEA enrichments at FDR < 0.01. Using these counts we calculated the 629 
proportion of de novo and conserved ORFs associated with a GO term and used Fisher’s exact 630 
test to assess the significance of association. P values returned by Fisher’s exact test were 631 
corrected for multiple hypothesis testing using Benjamini-Hochberg FDR correction. Odds ratios 632 
were calculated by dividing proportion of de novo ORFs to proportion of conserved ORFs. 633 
Proportions for the GO terms with FDR < 0.001 and Odds ratio greater than 2 or less than 0.5 634 
are plotted Figure 3C-D and are reported in Supplementary Data 4. 635 

Calculation of GO term similarities 636 

GO term similarities were calculated using the Relevance method developed in Schlicker et al.60 637 
This method considers both the information content (IC) of the GO terms that are being 638 
compared and the IC of their most informative ancestor. IC represents the frequency of a GO 639 
term; thus, an ancestral GO term has lower IC than a descendant. We used the GOSemSim79 640 
package in R that implements these similarity measures. 641 
 642 

Detection of homologs using BLAST  643 

We obtained the genomes of 332 budding yeasts from Shen et al. 201880. To investigate the 644 
homology of each non overlapping ORF in our dataset, we used TBLASTN and BLASTP81 645 
against each genome in the dataset, excluding the Saccharomyces genus. Default settings 646 
were used, with an e-value threshold of 0.0001. The BLASTP analysis was run against the list 647 
of protein coding genes used in Shen et al. 2018, while the TBLASTN analysis was run against 648 
each entire genome. We also applied BLASTP to annotated ORFs within the S. cerevisiae 649 
genome to identify homology that could be caused by whole genome duplication or 650 
transposons. 651 
 652 

Identification of de novo and conserved ORFs 653 

To identify de novo ORFs, we applied several strict criteria. Firstly, we obtained translation q-654 
values and reading frame conservation (RFC) data from Wacholder et al.7 All cORFs and only 655 
nORFs with a translation q-value less than 0.05 were considered as potential de novo 656 
candidates. We excluded ORFs that overlapped with another cORF on the same strand or had 657 
TBLASTN or BLASTP hits outside of the Saccharomyces genus at e-value < 0.0001. Moreover, 658 
we eliminated ORFs that had BLASTP hits to another canonical ORF in S. cerevisiae. From the 659 
remaining list of candidate de novo ORFs, we investigated whether their ancestral sequence 660 
could be noncoding. To do this, we utilized RFC values for each species within Saccharomyces 661 
genus. We classified ORFs as de novo if the RFC values for the most distant two species were 662 
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less than 0.6, suggesting the absence of a homologous ORF in those two species 663 
(Supplementary Figure 9). 664 
We identified conserved ORFs if a nonoverlapping cORF has an average RFC > .8 or has either 665 
TBLASTN or BLASTP hit at e-value < 0.0001 threshold.  666 
To identify conserved cORFs with overlaps we first considered if the cORFs had a BLASTP 667 
outside of Saccharomyces genus. Then for two overlapping ORFs, if one has RFC > 0.8 and 668 
the other has RFC < 0.8, we considered the one with higher RFC as conserved. For the ORF 669 
pairs that were not assigned as conserved using these two criteria, we applied TBLASTN for the 670 
non-overlapping parts of the overlapping pairs. Those with a TBLASTN hit with e-value < 0.0001 671 
were considered conserved. We found a total of 5,624 conserved ORFs and 2,756 de novo 672 
ORFs. 673 

Termination factor binding analysis 674 

ChIP-exo data for Pcf11 and Nrd1 termination factor binding sites are taken from Rossi et al.52 675 
This study reports binding sites at base pair resolution for S. cerevisiae for around 400 proteins. 676 
We used supplementary bed formatted files for Pcf11 and Nrd1, which are known transcriptional 677 
terminators, and used in house R scripts to find binding sites within the regions between the 678 
stop codon of conserved ORFs and the start codon of down same de novo ORFs. ORF pairs 679 
were classified as having terminators present between them if there was either Pcf11 or Nrd1 680 
binding.  681 

Shared transcript isoforms 682 

To determine whether two ORFs shared transcripts, we reused the TIF-Seq dataset from 683 
Pelechano et al.61 TIF-Seq is a sequencing method that detects the boundaries of transcript 684 
isoforms (TIFs). We extracted all reported TIFs from the supplementary data file S1 and 685 
identified all TIFs that fully cover each ORF in both YPD and galactose. We then used this 686 
information to find ORF pairs that mapped to the same TIFs. ORF pairs where the conserved 687 
ORF was not found in the TIF-seq dataset were not included and pairs where the de novo ORF 688 
was not found were considered to be not sharing a transcript.  689 
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Supplementary Figures 714 

Supplementary Figure 1 715 

 716 
Supplementary Figure 1 To understand the effect of sample size on coexpression values and to 717 
determine how many samples is sufficient for ⍴ to converge, we recalculated coexpression for a 718 
given ORF pair using n = 2 samples through n = all samples. Fluctuations were calculated as 719 
max(⍴)-min(⍴) within bins of 10 samples. The number of samples needed for ⍴ to converge was 720 
calculated as the first sample bin where ⍴ fluctuations ≤ fluctuation threshold, either 0.1 or 0.05. 721 
Histogram showing the minimum number of samples needed for ⍴ values to converge within ⍴ ± 722 
0.05 (left) and ⍴ ± 0.1 (right) for 2,167 cORF-nORF pairs with ⍴ > 99th percentile. Red dashed 723 
lines show the median number of samples needed. 724 
 725 
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Supplementary Figure 2 726 

 727 
Supplementary Figure 2 Distribution of coexpression values (⍴) for ORF pairs binned by 728 
expression level, from lowly expressed pairs top to highly expressed pairs bottom, A) before 729 
spatial quantile normalization (SpQN) and B) after SpQN, which normalizes the coexpression 730 
values so that the distribution within each expression bin is similar.  731 
 732 
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Supplementary Figure 3 733 

734 
Supplementary Figure 3 Network threshold affects cORFs and nORFs differently. Left shows 735 
the proportion of cORFs or nORFs in the network at each quantile threshold and the right shows 736 
the number of connections in the network. Dashed line represents 0.9998 quantile which was 737 
chosen for creating the network.  738 
  739 
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 740 

Supplementary Figure 4 741 

 742 

743 
Supplementary Figure 4 Clustered matrix heatmap. Coexpression values are first transformed 744 
by taking power of 12 and then WGCNA pipeline is applied. Clusters are determined by cutting 745 
dendrograms. Colors on ‘clusters’ section represent the different clusters. Values of 0.3 and 746 
above are represented by red to show the structure of the heatmap.  747 
 748 
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Supplementary Figure 5 749 

 750 
Supplementary Figure 5 Schema for generating randomized networks. Edges between cORF-751 
nORF and nORF-nORF pairs were swapped in a pairwise manner such that the degree of each 752 
node stayed the same. Edges between cORF-cORF pairs were not randomized.   753 
  754 
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 755 

Supplementary Figure 6 756 

 757 
Supplementary Figure 6 Gene set enrichment analysis (GSEA) pipeline using coexpression 758 
profiles to find gene ontology terms that are more likely to incorporate de novo ORFs.  759 

  760 
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Supplementary Figure 7 761 

 762 

763 
Supplementary Figure 7 The 20 most significant GSEA enrichments of YBR196C-A. 764 
Dendrogram was calculated using semantic similarities between GO terms. Node sizes 765 
correspond to the number of enriched genes. Node colors correspond to Benjamini-Hochberg 766 
corrected p-values (FDR). 767 
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Supplementary Figure 8 768 

 769 
Supplementary Figure 8 Coexpression level of de novo ORFs with neighboring conserved ORF 770 
is influenced by distance and orientation. There is a negative correlation between distance and 771 
coexpression for de novo ORFs located in the down same, up same and up opposite 772 
orientations (down opposite: R = 0.047, p = 0.017; down same: R = -0.49, p < 2.2e-16; up 773 
opposite: R = -0.2, p < 2.2e-16; up same: R = -0.25, p < 2.2e-16; Spearman’s correlation 774 
coefficient).  775 
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Supplementary Figure 9 776 

777 
Supplementary Figure 9 Determination of de novo ORFs using parsimony. Using 778 
Saccharomyces species, if an ORF is lost (represented by a gray ‘X’ in the plot) in the two of the 779 
most distant species and lacks BLAST hits, it is classified as de novo. 780 
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