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Abstract 9 

Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) 10 

outside of annotated protein-coding genes. However, shotgun mass spectrometry experiments typically 11 

detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity 12 

of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not 13 

present in the cell; alternatively, it could reflect technical limitations. Here we leveraged recent 14 

advances in ribosome profiling and mass spectrometry to investigate the factors limiting detection of 15 

noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can 16 

be explained by small size and low translation levels and does not indicate that they are unstable or 17 

biologically insignificant. In particular, no proteins encoded by evolutionarily young genes were 18 

detected, not even those with well-characterized biological roles. Additionally, we find that decoy biases 19 

can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false 20 

detections. After accounting for these issues, we found strong evidence for four noncanonical proteins 21 

in mass spectrometry data, which were also supported by evolution and translation data. These results 22 

illustrate the power of mass spectrometry to validate unannotated genes predicted by ribosome 23 

profiling, but also its substantial limitations in finding many biologically relevant lowly-expressed 24 

proteins.  25 

Introduction 26 

Ribosome profiling (ribo-seq) experiments indicate that genomes are pervasively translated outside of 27 

annotated coding sequences.1 This “noncanonical” translatome primarily consists of small open reading 28 

frames (ORFs), located on the UTRs of annotated protein-coding genes or on separate transcripts, that 29 

potentially encode thousands of small proteins missing from protein databases.2 Several previously 30 

unannotated translated ORFs identified by ribo-seq have been shown to encode microproteins that play 31 

important cellular roles.3–6 The number of translated noncanonical ORFs identified by ribo-seq analyses 32 

is typically very large, but many are weakly expressed, poorly conserved7–9, and not reproduced 33 

between studies10, suggesting that they may not all encode functional proteins. There has thus been 34 

considerable interest in proteomic detection of the predicted products of noncanonical ORFs.11–15 35 

Detection of a noncanonical ORF product by mass spectrometry (MS) confirms that the ORF can 36 

generate a stable protein that is present in the cell at detectable concentrations and thus might be a 37 

good candidate for future characterization. 38 

Over the past decade, numerous studies have attempted to identify noncanonical proteins using 39 

bottom-up “shotgun” proteomics in which MS/MS spectra from a digested protein sample are matched 40 

to predicted spectra from a protein database.16,17 These studies report hundreds of peptides encoded by 41 

noncanonical ORFs with evidence of detection in mass spectrometry data.13–15,18–20  However, these 42 

detections typically represent only a small fraction of the noncanonical ORFs found to be translated 43 

using ribo-seq. It is unclear whether most proteins translated from noncanonical ORFs are undetected 44 

by MS because they are absent from the cell, for example owing to rapid degradation, or because they 45 

are technically difficult to detect. Both the short sequence length and low abundance of noncanonical 46 

ORFs pose major challenges for detection in typical bottom-up MS analysis.17 Alternative techniques for 47 

protein detection, such as microscopy21 and targeted proteomics22, are more sensitive at detecting small 48 

proteins, but lack the convenience of untargeted bottom-up MS in being able to readily search for 49 

unannotated proteins predicted from an entire genome, transcriptome or translatome of a species.  50 
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Several recent MS studies have aimed to improve detection of short, lowly-expressed proteins in S. 51 

cerevisiae. He et al. 201823 used a combination of techniques to enrich for small proteins and detected 52 

117 microproteins, including three translated from unannotated ORFs. Gao et al. 202124 also used a 53 

combination of strategies to detect many small and low abundance proteins. Sun et al. 202225 searched 54 

for unannotated microproteins in a variety of stress conditions and found 70, all expressed from 55 

alternative reading frames of canonical coding sequences. At the same time as these studies provided 56 

increased coverage of the yeast proteome, Wacholder et al. 20237 integrated ribo-seq data from 57 

hundreds of experiments in over 40 published studies and assembled a high-confidence yeast reference 58 

translatome including 5372 canonical protein-coding genes and over 18,000 noncanonical ORFs. Here 59 

we leveraged these recent technical advances in MS and ribo-seq analysis to investigate the factors 60 

limiting detection of noncanonical proteins using S. cerevisiae as a model organism.  61 

Results 62 

Noncanonical peptides and decoys detected at comparable rates 63 

Using the MSFragger program26, we searched the three aforementioned published MS datasets 64 

optimized for detection of short, lowly expressed proteins23–25 against a sequence dataset that included 65 

all 5,968 canonical yeast proteins on Saccharomyces Genome Database (SGD)27 as well as predicted 66 

proteins from 18,947 noncanonical ORFs (including both unannotated ORFs and ORFs annotated as 67 

“dubious”) inferred to be translated in Wacholder et al. 20237 on the basis of ribosome profiling data. 68 

The spectra from the three studies were pooled and false discovery rates (FDR) were estimated 69 

separately for canonical and noncanonical ORFs using a target-decoy approach.28 MSFragger expect 70 

scores were used to assess confidence in peptide-spectrum matches (PSMs), with lower values 71 

indicating stronger matches. Among canonical ORFs, 4021 of 5968 had proteins detected at a 1% FDR 72 

(Figure 1A). For noncanonical ORFs, it was not possible to generate a substantial list of detected 73 

proteins at a 1% FDR because too many decoys were detected relative to targets at all confidence 74 

thresholds (Figure 1B).  75 
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 76 

Figure 1: Few noncanonical proteins are confidently detected in MS data. A) The number of predicted proteins and decoys 77 
detected in MS data at a range of confidence thresholds among canonical yeast proteins. The dashed line signifies the 1% FDR 78 
threshold. B) The number of predicted noncanonical proteins and decoys detected in MS data at a range of confidence 79 
thresholds.  80 

Decoy bias among noncanonical ORF products leads to inaccurate FDR estimates  81 

In general, there is a trade-off in target-decoy approaches such that setting a weaker confidence 82 

threshold results in a longer list of proteins inferred as detected, but with a higher FDR. In the case of 83 

yeast noncanonical ORF peptides, the decoy/target ratio never went below 60% for any list of inferred 84 

detected target proteins larger than 10, and this ratio also did not converge to 1 even with thresholds 85 

set to allow 10,000 target proteins to pass (Figure 2A). The small enrichment of targets above decoys 86 

gives little confidence in detection of noncanonical ORF products at the level of individual proteins but 87 

leaves open the possibility that MS data could contain a weak biological signal.  88 

However, there is an alternative explanation for why targets are found at somewhat higher rates than 89 

decoys across a large range of confidence thresholds: decoy bias.28 The accuracy of FDR calculations 90 

require that target and decoy false positives are equally likely at any threshold, but this assumption 91 

could be violated if there are systematic differences between targets and decoys. Decoy bias has been 92 

assessed in previous work by comparing the number of target and decoy PSMs below the top rank for 93 

each spectra: if a peptide is genuinely detected, it will usually be the best match to its spectra, and so 94 

lower-ranked matched peptides will be false and should appear at approximately equal numbers for 95 

both targets and decoys.28 Among canonical ORFs, this expected pattern is observed (Figure 2B). In 96 

contrast, targets substantially outnumber decoys at all ranks for noncanonical ORFs (Figure 2C). We 97 

reasoned that this bias could be explained by the short length of noncanonical proteins. Indeed, many 98 

predicted peptides derived from noncanonical ORFs include the starting methionine, while decoys, 99 

consisting of reversed sequences from the protein database, are more likely to end with methionine 100 
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(Figure 2D). To eliminate this large systematic difference, we constructed an alternative decoy database 101 

in which decoys for noncanonical proteins were reversed only after the leading methionine. When this 102 

database is used, the number of noncanonical targets and decoys at each rank is close to equal (Figure 103 

2E) and the target/decoy ratio converges to one as confidence thresholds are lowered (Figure 2F). This 104 

behavior is consistent with expectations for a well-constructed decoy set. We therefore repeated our 105 

initial analysis using the alternative decoy set (Figure 2G-H) and used it for all subsequent analyses. 106 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.09.531963doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531963


6 
 

 107 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.09.531963doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531963


7 
 

Figure 2: Decoy biases distort false discovery rate estimation. A) Among noncanonical proteins, the ratio of decoys detected to 108 
targets detected, across a range of targets detected, which varies with expect score threshold. Decoys are reverse sequences of 109 
the noncanonical protein database. B) Across all spectra, the proportion of peptide-spectrum matches of each rank that are 110 
canonical peptides vs. decoys. Peptide rank indicates the rank of the strength of the peptide-spectrum match, ordered across 111 
all peptides and decoys. C) Across all spectra, the proportion of peptide-spectrum matches of each rank that are noncanonical 112 
peptides vs. decoys. D) Among noncanonical ORF and decoy predicted trypsinized peptides that match spectra at any 113 
confidence level, the proportion that start or end with a methionine. E) Across all spectra, the proportion of peptide-spectrum 114 
matches of each rank that are noncanonical peptides vs. decoys, using the alternative decoy set. Alternative decoys are 115 
constructed by reversing noncanonical proteins after the starting methionine, such that all decoy and noncanonical proteins 116 
start with M. F) Among noncanonical proteins, the ratio of decoys detected to targets detected across counts of targets 117 
detected, using the alternative decoy set. G) The number of predicted proteins and decoys at a range of confidence thresholds, 118 
using the alternative decoy set. H) The best peptide-spectrum match expect scores for each noncanonical protein and decoy in 119 
the database, using the alternative decoy set. 120 

Two noncanonical proteins show strong evidence of genuine detection 121 

Using the alternative decoy set and standard MSFragger analysis, we remained unable to construct an 122 

FDR-controlled list of noncanonical proteins at a 10% FDR threshold because decoys were still detected 123 

at a similar rate as targets (Figure 2G). We therefore sought to examine the strongest hits to determine 124 

if we could identify evidence that any were genuine detections. Two noncanonical proteins had peptides 125 

with stronger expect scores than any decoys (Figure 2H; standard MSFragger approach in Table 1).  We 126 

gave the ORFs encoding these proteins systematic names YMR106W-A and YFR035W-A following SGD 127 

conventions. Both proteins matched to two distinct spectra at thresholds stronger than the best decoy 128 

match. Moreover, YMR106W and YFR035W-A both had ribo-seq read counts greater than 99.9% of 129 

noncanonical ORFs in the Wacholder et al. dataset. The identification of multiple matching spectra for 130 

these noncanonical proteins and their relatively high rates of translation provide strong support that 131 

these are genuine detections.  132 

Table 1: Noncanonical ORFs possibly detected in mass spectrometry data 133 

Systematic 
name 

Approaches 
used to 
find 

Coordinates Peptides detected 
(spectra count) 

Best 
expect 
score 

Quantile of 
ribo-seq 
read count 

Evidence of 
conservation 

Strength of 
evidence** 

YMR106W-A* Standard 
MSFragger, 
MS-GF+ 

chrXIII:4809
24-481187  

MISMEAINNFIK (1), 
ISMEAINNFIK (1) 

9.82e-06 0.99958 None Strong 

YFR035W-A* Standard 
MSFragger, 
MS-FG+ 

chrVI:22626
0-226550  

HLNIPDLRFEK (2) 1.04e-07 0.99974 Conserved 
within genus 

Strong 

YPR159C-A Acetylation chrXVI: 
857598-
857660 

IVACTICVQVCATKVVR 
(1) 

8.48e-06 0.858 None Weak 

YIL059CW-A* Non-
enzymatic 
end 

chrIX:24655
0-246915 

EFDFDVGYEEFVR (1) 4.74e-07 0.987 Conserved 
with S. jurei 

Strong 

YNL155C-A* Same-
strand 
overlap 

chrXIV: 
341911-
342135 

KQHTEWPIEENR (2), 
MIGLIVVPILFAIK (8) 

1.06e-08 0.99968 Conserved 
within genus 

Strong 

*Assigned in this study. 134 

**Assessed based on proteomic, translation and evolutionary evidence 135 
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YMR106W-A is located 27 nt away from a Ty1 long terminal repeat. No homologs outside S. cerevisiae 136 

were found using BLASTP or TBLASTN against the NCBI non-redundant and nucleotide databases or 137 

against the 332 budding yeast genomes collected by Shen et al. 2018.29 It is thus plausible that this ORF 138 

was brought into the S. cerevisiae genome through horizontal transfer mediated by Ty1 139 

retrotransposition.30 YFR035W-A overlaps the canonical ORF YFR035C on the opposite strand. However, 140 

YFR035C was not detected in our canonical protein MS analysis. YFR035C deletion was reported to 141 

increase sensitivity to alpha-synuclein31, but this observation stemmed from a full ORF deletion that 142 

would also have disturbed YFR035W-A. While YFR035C has 287 in-frame ribo-seq reads mapping to the 143 

ORF in the Wacholder et al. 20237 dataset, YFR035W-A has 22,523, greater by a factor of 79 (Figure 3A). 144 

In a multiple sequence alignment with other species in the Saccharomyces genus, the full span of the 145 

YFR035W-A amino acid sequence aligns between all species (Figure 3B), while other species have an 146 

early stop preventing alignment with most of the YFR035C amino acid sequence (Figure 3C). Thus, 147 

evolutionary, translation and proteomics evidence all indicate that unannotated ORF YFR035W-A is a 148 

better candidate for a conserved protein-coding gene than annotated ORF YFR035C. 149 

Alternative strategies for MS search yield two additional noncanonical peptide detections 150 

Aside from YMR106W-A and YFR035W-A, the standard MSFragger approach did not confidently detect 151 

proteins encoded by noncanonical ORFs supported by ribo-seq. We therefore considered some reasons 152 

we could miss noncanonical proteins present in the data and employed alternative approaches to test 153 

these possibilities. For each approach, we determined whether a substantial list of noncanonical ORFs 154 

could be constructed with FDR of 10%. If not, we further investigated peptides with expect scores < 10-5, 155 

similar to the level at which YMR106W-A was detected.  156 

First, we hypothesized that a mismatch between the environmental conditions in which the ribo-seq and 157 

MS datasets were constructed may explain the low number of detected noncanonical proteins. To 158 

investigate this possibility, we reduced our analysis to consider only ribo-seq and MS experiments 159 

conducted on cells grown in YPD at 30° C. The target/decoy ratio looked similar to the analysis on the 160 

full dataset, with no peptide list generatable with a 10% FDR (Figure 4A). The only noncanonical proteins 161 

detected at a 10-5 expect score threshold were the same two as in the standard analysis. 162 

Next, to ensure our results were not specific to the search program MSFragger, we repeated our analysis 163 

using MS-GF+.32 The pattern of target vs. decoy detection was again similar to the standard MSFragger 164 

analysis, with no peptide list generatable with a 10% FDR (Figure 4B). The only noncanonical proteins 165 

detected at a 10-5 e-value threshold were YMR106W-A and YFR035W-A, also found by MSFragger. We 166 

then applied the machine learning based MS2Rescore algorithm33 to rescore the MSGF+ results, as this 167 

has been shown to improve peptide identification rates in some contexts. However, this also did not 168 

improve target-decoy ratios (Figure 4C) and the strongest rescored match was to a decoy.  169 

Next, we hypothesized that noncanonical proteins could have been missed from our searches due to 170 

post-translational modification or cleavage. Allowing for phosphorylation of threonine, serine, or 171 

tyrosine as variable modifications did not improve the decoy/target ratio or yield detection of any 172 

noncanonical phosphorylated peptides at a 10-5 expect score threshold (Figure 4D). Adding acetylation 173 

of lysine or N-terminal acetylation as variable modifications did not improve target/decoy ratios overall 174 

(Figure 4E), but a single hit with an expect score of 8.48 x 10-6 was found, which we named YPR159C-A. 175 

The corresponding peptide was encoded from an ORF on the opposite strand of the canonical gene 176 

YPR159W. However, this hypothetical protein was identified from a peptide found only once, showed no 177 
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evidence of conservation in the Saccharomyces genus, and was translated at lower levels than other 178 

noncanonical protein detections (Table 1); we therefore conclude that it may not be a genuine 179 

detection. 180 

Allowing for peptides to have one end that is not an enzymatic cut site to search for potential cleavage 181 

products did not improve target/decoy ratios overall (Figure 4F), but a single additional noncanonical 182 

peptide was identified with a relatively strong expect score of 4.7 x 10-7. This peptide was from the ORF 183 

YIL059C, annotated as “dubious” on SGD, indicating that, in the view of SGD, the ORF is “unlikely to 184 

encode a functional protein.” YIL059C is in the 98th percentile of ribo-seq read count and 99th percentile 185 

of length among noncanonical ORFs, at 366 nt (Table 1). It overlaps on the opposite strand the ORF 186 

YIL060W, classified as “verified” on SGD. However, the references listed in support of YIL060W are all 187 

based on full deletion experiments which would disturb both ORFs and therefore do not distinguish 188 

between them.34–36 YIL060W may have been considered the more likely gene as its ORF is longer, at 435 189 

nt. But as in the case of YFR035C and YFR035W-A discussed above, both ribo-seq and MS data provide 190 

more support for the noncanonical ORF than the canonical ORF on the opposite strand: YIL059C has 191 

1741 ribo-seq reads compared to only 7 reads for YIL060W (Figure 5A), and YIL060W was not detected 192 

in our MS analysis of canonical ORFs. Given that the YIL059C peptide had one non-enzymatic end, we 193 

tested whether it could be a signal peptide using the TargetP program.37 YIL059C has a predicted signal 194 

peptide cleavage site corresponding exactly to the detected peptide (Figure 5B), providing additional 195 

support that this is a genuine detection. Searching for homologs using TBLASTN, BLASTP and BLASTN in 196 

the NCBI databases and in Saccharomyces genus genomes at a 10-4 e-value threshold, YIL059C and 197 

YIL060W have detected DNA homologs only in Saccharomyces species S. paradoxus, S. mikatae and S. 198 

jurei. There was an intact protein alignment  of YIL059C between S. cerevisiae and S jurei (Figure 5C) 199 

while YIL060W has no homologs that fully align in any species (Figure 5D). YJL059C is located adjacent, 200 

and on the opposite strand, to a Ty2 long terminal repeat. These observations are consistent with a 201 

transposon-mediated horizontal transfer of YIL059C prior to divergence between S. cerevisiae and S. 202 

mikatae, followed by loss in S. paradoxus and S. mikatae and preservation in S. cerevisiae and S. jurei. 203 

We do not rule out a role for YIL060W, but all considered evidence provides greater support for the 204 

biological significance of YIL059C. 205 
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Figure 3: Translation and evolutionary evidence indicates that unannotated ORF YFR035W-A is likely a conserved gene. A) 207 
ribo-seq reads on unannotated ORF YFR035W-A (top) and annotated ORF YFR035C (bottom). The bounds of each ORF are 208 
indicated in boxes. The location of the detected peptide is indicated in green. B) Alignment of the amino acid sequence of 209 
YFR035W-A with its homologs across the Saccharomyces genus. C) Amino acid alignment of the annotated ORF YFR035C and its 210 
homologs in Saccharomyces. 211 

 212 

Figure 4: Alternative strategies for detecting noncanonical ORF products yield few additional discoveries. A-F) The number of 213 
predicted proteins and decoys detected across a range of thresholds, using a variety of strategies for detection. Aside from the 214 
specific changes indicated, all searches were run using the same parameter settings (described in Methods).  A) Analysis using 215 
only ribo-seq and MS data taken from yeast grown in YPD at 30° C. B) Analysis using the program MSGF+. C) Analysis using the 216 
rescoring algorithm MS2Rescore on MSGF+ results. D) Analysis allowing for phosphorylation of threonine, serine or tyrosine as 217 
variable modifiations. E) Analysis allowing for acetylation of lysine or n-terminal acetylation as variable modifications. F) 218 
Analysis allowing detection of peptides with one end as a non-enzymatic cut site.   219 

Finally, we wanted to investigate a class of noncanonical ORFs not present in the Wacholder et al. 220 

translated ORF dataset: noncanonical ORFs that overlap a canonical ORF on the same strand. These 221 

ORFs are difficult to identify by ribo-seq because it is challenging to distinguish noncanonical ORF-222 

associated ribo-seq reads from those of the canonical gene; however, some proteins encoded by 223 

noncanonical ORFs that overlap canonical ORFs have been identified in previous MS analyses, including 224 

in the Sun et al. dataset included in our MS analysis.25 We therefore constructed a sequence database 225 

consisting of all canonical ORFs as well as noncanonical ORFs that overlap canonical ORFs on the same 226 

strand, with ORFs determined only from the genome sequence rather than expression evidence. 227 
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Running this database against the full set of MS data, we again observed that, among noncanonical 228 

ORFs, decoys were detected at a high fraction of the rate of predicted peptides and so a list of confident 229 

noncanonical detections could not be established at reasonable false discovery rates (Figure 6A). Only 230 

one overlapping ORF had associated PSMs with expect scores stronger than 10-5. We assigned it 231 

systematic name YNL155C-A following SGD conventions (Table 1). 232 

The stable translation product of YNL155C-A was supported by two distinct peptides which together 233 

were detected 10 times with expect scores below the best decoy score of 5.12 x 10-7, with the strongest 234 

value of 1.06 x 10-8
. This 255 bp ORF overlaps canonical gene YNL156C for 57 of 255 bases. Its translation 235 

product was not identified in the Sun et al. analysis.25 A clear pattern of ribo-seq read triplet periodicity 236 

was observed in the frame of YNL155C-A (i.e., reads tend to match to the first position of a codon) 237 

before the overlap with YNL156C, indicating translation in this frame (Figure 6B). There also appears to 238 

be a triplet periodic pattern in a frame distinct from both YNL156C and YNL155C-A at the locus, 239 

suggesting that all three frames may be translated. Excluding the overlapping region, there are 14,741 240 

reads on the ORF that map to the first position of a codon in the YNL155C-A reading frame; this would 241 

put it in the 99.95th percentile of read count among translated noncanonical ORFs in the Wacholder et 242 

al. dataset. No homologs were found in more distantly related species in a TBLASTN search against the 243 

NCBI non-redundant protein database, but YNL155C-A was well conserved across Saccharomyces (Figure 244 

6C). Thus, proteomic, translation and evolutionary evidence all support YNL155C-A as a protein-coding 245 

gene.  246 
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 247 

Figure 5: Dubious ORF YIL059C encodes a signal peptide. A) Ribo-seq reads on canonical ORF YIL060W (top) and “dubious” ORF 248 
YIL059C (bottom). The bounds of each ORF are indicated in boxes. The location of the detected peptide is indicated in green. B) 249 
Probability of a signal peptide cleavage site across the YIL059C sequence, as predicted by TargetP.37 The peptide detected in MS 250 
analysis is indicated by a green box.  C) Alignment of YIL059C with the highest identity protein matches at the homologous locus 251 
in Saccharomyces species. Only species with a homologous locus (at the DNA level) are shown. D) Alignment of YIL060W, the 252 
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canonical gene antisense to YIL059C, with its highest identity protein matches at the homologous locus in Saccharomyces 253 
species. 254 

 255 

Figure 6: Noncanonical protein YNL155C-A, detected by MS, is well-translated and conserved in Saccharomyces genus. A) 256 
Predicted proteins and decoys detected in MS data at a range of expect-score thresholds, among noncanonical proteins that 257 
could be encoded by ORFs that overlap canonical ORFs on alternative frames. B) Ribo-seq reads across the YNL155C-A ORF. 258 
Reads are assigned to the reading frame in which the position they map to is the first position in a codon. The full span of 259 
YNL155C-A and the start of YNL156C are shown. The position of the two peptides found in MS are in green. C) Multiple 260 
sequence alignment of YNL155C-A with its homologs in the Saccharomyces genus. 261 

The low detectability of noncanonical proteins can be explained by their short lengths and low 262 

translation rates 263 

We sought to understand why the large majority of peptides predicted from translated noncanonical 264 

ORFs remained undetected across multiple computational search strategies. A major difference 265 

between canonical and noncanonical proteins is length: the average canonical protein is 503 residues 266 

compared to only 31 among noncanonical proteins. Short size can affect protein detection probability 267 

through distinct mechanisms: the sample preparation steps of the MS experiment may be biased against 268 

small proteins17, and shorter sequences also provide fewer distinct peptides when digested. To 269 

distinguish these mechanisms, we related detection probability to ORF length at the level of peptides 270 

rather than proteins. We computationally constructed all possible enzymatic peptide sequences that 271 

could be theoretically detected from the proteins in the sequence database given their length and mass. 272 

We then calculated the peptide detection rate, out of all theoretically detectable peptides, among 273 

different ORF size classes (Figure 7A). We observe a division between canonical ORFs shorter vs. longer 274 

than 150 nt. Among 27 canonical yeast ORFs  shorter than 150 nt, none of the 269 theoretically 275 

detectable peptides were detected at a 10-6 expect score threshold (a high-confidence detection 276 

threshold). This detection rate is significantly below expectation given the overall 5.5% rate at which 277 

canonical peptides are detected (binomial test, p = 5.5 x 10-7), suggesting that there may be technical 278 

biases limiting detection of proteins that are this short. As 83% of noncanonical ORFs (15,717) are 279 

shorter than 150 nt, short length can partially explain the low detectability of noncanonical ORF 280 

products. In contrast, however, among canonical ORFs longer than 150 nt, shorter lengths were 281 

associated with higher probabilities that a peptide was detected. This is likely due to a trend of higher 282 

translation rates among shorter ORFs (Supplementary Figure 1A), which is also observed among 283 
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noncanonical ORFs (Supplementary Figure 1B). This observation suggests that short size should not be a 284 

barrier to detection of proteins encoded by noncanonical ORFs longer than 150 nt. There are 3,080 such 285 

ORFs, potentially encoding 32,728 detectable peptides, yet only one was found at a 10-6 expect score 286 

threshold (the peptide from YFR035W-A, Table 1).  287 

Besides length, a major difference between canonical and noncanonical ORFs is expression level, and 288 

this too can affect the probability a protein is detected in MS data.17 We therefore evaluated the 289 

relation between translation level and detection probability using the ribo-seq data from Wacholder et 290 

al. The number of in-frame ribo-seq reads that map to a canonical ORF is strongly associated with the 291 

probability of detecting the ORF product at a 10-6 expect score threshold, at both the protein (Figure 7B) 292 

and peptide (Figure 7C) level. As with protein length, we can use the canonical ORFs to infer an 293 

approximate detection limit: among 267 canonical ORFs with fewer than 1000 in-frame mapped reads, 294 

only 2 of 8388 theoretically detectable peptides were detected at a 10-6 threshold. Thus, almost all 295 

canonical peptides, with only these two exceptions, are found among ORFs with at least 1000 reads and 296 

longer than 150 nt. Yet, only 80 noncanonical ORFs (0.4% of total) are in this category (Figure 7D). Thus, 297 

almost all noncanonical ORFs are outside the limits in which canonical ORF products are detected by MS.  298 

For the 80 noncanonical translated ORFs displaying length and expression levels amenable to detection 299 

(longer than 150 nt and detected with more than 1000 ribo-seq reads), we estimated the probability a 300 

peptide would be detected at a 10-6 expect score threshold under the assumption that detection 301 

probability depends only on read count. This probability was estimated as the peptide detection rate 302 

among canonical ORFs with a similar read count to the transient ORF (a natural log of read count within 303 

0.5). Given these estimates, the expected total count of detected peptides for the 80 ORFs was 2.68. In 304 

reality, a single peptide was detected (the peptide from YFR035W-A, Table 1). To see whether observing 305 

only a single detection was surprising, we simulated the distribution of peptide detection counts under 306 

the estimated detection probabilities (Figure 7E). The observed count of one peptide detection was 307 

obtained in 28% of 100,000 simulations, and in 15% of simulations there were no detections. Thus, the 308 

single observed detection of a noncanonical peptide at a 10-6 expect score threshold is within range of 309 

expectations.  310 

No evolutionarily transient ORFs detected in MS data, even annotated ORFs with established roles 311 

A majority of translated ORFs identified in the Wacholder et al. dataset are classified as “evolutionarily 312 

transient”, indicating that they are of recent evolutionary origin and do not show signatures of purifying 313 

selection. Of 18,947 noncanonical ORFs analyzed here, 17,471 (91%) are inferred to be evolutionarily 314 

transient in Wacholder et al.; an additional 103 canonical ORFs are also classified as transient. As these 315 

ORFs comprise such a large portion of the noncanonical translatome, we wanted to assess whether any 316 

could be detected in MS data. 317 

No evolutionarily transient noncanonical ORFs were detected in our analyses, as none of the 318 

noncanonical proteins we identified (listed in Table 1) were classified as evolutionarily transient. Among 319 

the 103 evolutionarily transient canonical ORFs, none were detected at a 10-5 expect score threshold, 320 

and similar numbers of ORFs and decoys were found at weaker thresholds (Supplementary Figure 2). 321 

Five transient canonical ORFs have been characterized in some depth7, including MDF1, a well-322 

established de novo gene specific to S. cerevisiae that plays a role in the yeast mating pathway.38 Yet 323 

none of these show any evidence of detection in the MS datasets examined here, with expect scores far 324 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.09.531963doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531963


16 
 

higher than what would constitute even weak evidence (Table 2). These results indicate that MS 325 

detection appears to miss the entire class of evolutionary transient ORFs, whether canonical or not.  326 

Table 2 327 

Canonical transient ORF Major publication Minimum expect score 

MDF1  Li et al. 201038 1.85 

YBR196C-A Vakirlis et al. 202039 .99 

HUR1 Omidi et al. 201840 1.62 

YPR096C Hajikarimlou et al. 202041 0.10 

ICS3 Alesso et al. 201542 0.03 

 328 

Discussion 329 

Bottom-up mass spectrometry is an attractive approach for validating noncanonical ORFs supported by 330 

ribosome profiling due to the ease of testing large lists of predicted proteins but is limited by low 331 

sensitivity. Analyzing three mass spectrometry experiments optimized to find small proteins, we 332 

identified three noncanonical proteins expressed from ORFs identified as translated in a recent analysis 333 

of yeast ribosome profiling studies (YMR106W-A, YFR035W-A, and YIL059C). We additionally found MS 334 

evidence for an ORF not initially identified by ribo-seq, YNL155C-A, due to overlapping a canonical ORF 335 

on the same strand. All four proteins were translated at rates much higher than typical noncanonical 336 

ORFs, providing independent evidence that they are genuine protein-coding genes; three also showed 337 

evidence of evolutionary conservation. These findings illustrate the power of using proteomic, 338 

translation, and evolutionary evidence in combination to identify undiscovered genes at high confidence 339 

even in a well-annotated model organism. 340 
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 341 

 342 

Figure 7: Lack of detection of noncanonical proteins can be explained by their low translation rate. A) The proportion of 343 
canonical peptides detected, among all eligible for detection, for ORFs of different size classes. Bars indicate a range of one 344 
standard error. A dashed line is drawn at 150 nt, below which no canonical peptides are detected. B) Proportion of canonical 345 
proteins detected within bins defined by total count of in-frame ribo-seq reads mapping to the ORF. A dashed line is drawn at 346 
1000 reads, below which few canonical proteins are detected. C) Proportion of canonical peptides detected, out of all eligible, 347 
within bins defined by total count of in-frame ribo-seq reads mapping to the ORF. A dashed line is drawn at 1000 reads, below 348 
which few canonical peptides are detected. D) For all peptides predicted from canonical and noncanonical translated ORFs with 349 
detectable mass and length, the in-frame ribo-seq read count and ORF length is plotted. Nearly all detectable peptides are 350 
restricted to the top right quadrant, where ORF length > 150 nt and ribo-seq read count > 1000. E) The distribution of counts of 351 
noncanonical ORF peptides detected in 100,000 simulations, with peptide detection probabilities for each peptide estimated 352 
from canonical peptides encoded by ORFs with similar read counts. An arrow points to the number detected in actuality. 353 

Nevertheless, the vast majority of ribo-seq supported noncanonical ORFs showed no evidence of 354 

detection in MS datasets. We show that the low rates of detection of noncanonical ORFs can be 355 

explained by their short size and low translation rate: canonical ORFs with similar levels of translation 356 

are also very rarely detected. As size and translation rate alone can explain the differences in 357 

detectability between canonical and noncanonical ORFs, little else about the biology of noncanonical 358 

ORFs can be inferred from their lack of detection in MS data. We cannot conclude that proteins 359 

expressed from noncanonical ORFs are less stable than canonical proteins, that they are targeted for 360 

degradation at higher rates, or that they are less likely to be functional, except to the extent that low 361 

expression already justifies these inferences.  362 

A majority of the yeast noncanonical translatome, and a small portion of the canonical, consist of 363 

evolutionarily young ORFs with little evolutionary conservation, classified as “evolutionary transient 364 

ORFs” in the Wacholder et al. dataset.7 No transient ORFs were detected in MS data, not even canonical 365 
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transient ORFs that are well characterized. Evolutionary transient ORFs are both abundant in the 366 

genome and biologically significant, with some playing important roles in conserved pathways despite 367 

their short evolutionary lifespans.7 Though we were unable to detect them in MS data, numerous 368 

proteins expressed from evolutionarily transient ORFs are found to be present in the cell in microscopy 369 

studies.7 The biology of the vast majority of these ORFs are poorly understood; most have never been 370 

studied in any depth. Bottom-up MS, using currently available studies, does not appear useful for 371 

identifying the evolutionarily transient ORFs most likely to have interesting biological roles. 372 

There is considerable variability across studies that attempt to detect noncanonical proteins using MS, 373 

with some reporting detection of hundreds of proteins while others, as in this study, find many 374 

fewer.10,13,15,18,22,25,43–46 This could partly reflect biological differences between the cell types and species 375 

analyzed. However, there is also great variation in statistical approach. For example, though it is 376 

recommended for studies of noncanonical proteins to estimate a class-specific FDR among the 377 

noncanonical proteins themselves47,48, some studies control confidence using a whole-proteome FDR 378 

(including both canonical and noncanonical), which may allow many false discoveries among the 379 

noncanonical proteins. There is a need to adopt a more consistent standard that will limit the number of 380 

false positive detections. We believe the approach employed here, in which the distribution of 381 

confidence scores among predicted noncanonical proteins and their unbiased decoys is directly 382 

compared, provides a clear picture of the extent to which noncanonical proteins can be genuinely 383 

detected.  384 

We conclude that, while MS analysis of yeast ribo-seq supported noncanonical ORFs has some utility, it 385 

also has major limitations: it misses noncanonical proteins likely to be of biological interest, including an 386 

entire class of translated element, the evolutionarily transient ORFs. Targeted approaches such as 387 

Western blots, microscopy, and top-down MS, or new technological developments such as protein 388 

sequencing49, are needed to better assess the cellular presence and abundance of the great majority of 389 

proteins potentially encoded by the noncanonical translatome. 390 

Supplementary Figures 391 

 392 
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 393 

Supplementary Figure 1: Translation rate declines with ORF size. A) Average log ribo-seq read count 394 

per nucleotide among canonical ORFs of different size classes. B) Average log ribo-seq read count per 395 

nucleotide among noncanonical ORFs of different size classes. 396 

 397 

Supplementary Figure 2: Evolutionarily transient canonical proteins found at similar rates to decoys.  398 

Predicted proteins and decoys detected in MS data at a range of expect-score thresholds, among 399 

canonical proteins identified as evolutionarily transient in Wacholder et al. 202150, using the standard 400 

MSFragger approach. 401 

Methods 402 

Mass spectrometry search 403 

All mass spectrometry data files were taken from three studies. The He et al. 201823 dataset PXD008586 404 

and Gao et al. 2021 dataset PXD001928 were downloaded from PRIDE. The Sun et al. 202225 dataset 405 

PXD028623 was downloaded from IPROX. These datasets were searched using all proteins predicted to 406 

be encoded from the full reference translatome described in Wacholder et al. 2021.50 The sequence 407 

database was supplemented with all canonical proteins not included in the Wacholder et al. 2021 408 
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dataset. Canonical proteins are those annotated as “verified”, “uncharacterized” or “transposable 409 

element” in the August 3, 2022 update of the Saccharomyces Genome Database annotation.27 410 

Searches were conducted using the MSFragger program.26 Unless otherwise indicated, the following 411 

parameters were used: 20 ppm precursor mass tolerance, 20 ppm fragment mass tolerance, two 412 

enzymatic termini required, up to two missed cleavages allowed, clipping to the N-terminal methionine 413 

as a variable modification, methionine oxidation as a variable modification, cysteine 414 

carbamidomethylation as fixed modification, peptide digestion lengths from 7 to 50 nt, peptide masses 415 

from 350 to 1800 Daltons, a maximum fragment charge of 2, and all other parameters as default. FDR 416 

was calculated in a class-specific manner (i.e., specific to canonical or noncanonical ORFs) by dividing the 417 

number of decoys within the class that are below the expect score threshold from the number of targets 418 

in the class lower than the threshold. Decoys were either default (reverse of protein database sequence) 419 

or reversed after the starting methionine, as indicated. Peptides were excluded if they belonged to more 420 

than one predicted protein. Peptide-spectrum matches were excluded if the MSFragger hyperscore was 421 

less than 3 above the score for the next best peptide, in order to avoid using peptide-spectrum matches 422 

that did not uniquely support a single protein.  423 

In one analysis, searches were instead conducted using the MS-GF+ program.32 All available parameters 424 

were set to be the same as in the MSFragger search, and decoys were reversed after the starting 425 

methionine. MS2Rescore33 was then run on MS-GF+ output files to rescore the results.  426 

Ribo-seq data 427 

All ribo-seq data was taken from the analysis in Wacholder et al. 2021.50 This data included ribo-seq 428 

reads aggregated over 42 published studies and mapped to the S. cerevisiae genome. A read was 429 

considered to map to an ORF only if the inferred P-site mapped to the first position of a codon in the 430 

reading frame of the ORF; the total read count for an ORF is the sum of reads mapping over all first 431 

codon positions. 432 

Homology analyses 433 

BLAST analyses were conducted with default settings and a 10-4 e-value threshold to consider a match a 434 

homolog. BLAST searches conducted on NCBI databases were done on the NCBI website. Searches of the 435 

yeast genomes collected in Shen et al.29 were conducted using the BLAST command line tool on the 436 

genomes taken from that study.51 BLAST searches of Saccharomyces species genomes were conducted 437 

on genomes acquired from the following sources: S. paradoxus from Liti et al. 200952, S. arboricolus from 438 

Liti et al. 201353, S. jurei from Naseeb et al. 201854,  and S. mikatae, S. uvarum, S. eubayanus and S. 439 

kudriavzevii from Scannell et al. 2011.55 These genome were also used to make sequence alignments. All 440 

sequence alignments were generated using the MAFFT tool on the European Bioinformatics Institute 441 

website.56  442 

Peptide Analysis 443 

For each ORF in the protein database, a set of possible peptides was constructed following the same 444 

rules as used for the MSFragger analysis: two enzymatic termini (or protein ends) were required, up to 445 

two missed cleavages were allowed, clipping to the N-terminal methionine was a variable modification, 446 

and methionine oxidation was a variable modification. As in the MSFragger analysis, peptides were 447 

restricted to 7 to 50 nt and peptide masses from 350 to 1800 Daltons. Out of this list of theoretical 448 
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peptides, the peptides that were detected in the MS analysis at a 10-6 expect score threshold in at least 449 

one experiment were identified. 450 
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