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Summary 15 

Translation is the process by which ribosomes synthesize proteins. Ribosome profiling recently revealed 16 

that many short sequences previously thought to be noncoding are pervasively translated. To identify 17 

protein-coding genes in this noncanonical translatome, we combine an integrative framework for 18 

extremely sensitive ribosome profiling analysis, iRibo, with high-powered selection inferences tailored 19 

for short sequences. We construct a reference translatome for Saccharomyces cerevisiae comprising 20 

5,400 canonical and almost 19,000 noncanonical translated elements. Only 14 noncanonical elements 21 

were evolving under detectable purifying selection. Surprisingly, a representative subset of translated 22 

elements lacking signatures of selection demonstrated involvement in processes including DNA repair, 23 

stress response and post-transcriptional regulation. Our results suggest that most translated elements 24 

are not conserved protein-coding genes and contribute to genotype-phenotype relationships through 25 

fast-evolving molecular mechanisms.  26 

Keywords: 27 

Noncanonical translation, ribosome profiling, de novo gene birth, protein evolution, evolutionary 28 

genomics, microproteins, smORFs, genome annotation  29 
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Introduction 31 

The central role played by protein-coding genes in biological processes has made their identification and 32 

characterization an essential project for understanding organismal biology. Over the past decade, the 33 

scope of this project has expanded as ribosome profiling (ribo-seq) studies have revealed pervasive 34 

translation of eukaryotic genomes.1–4 These experiments demonstrate that genomes encode not only 35 

the “canonical translatome”, consisting of the open reading frames (ORFs) identified as protein-coding 36 

genes in genome databases like RefSeq5, but also a large “noncanonical translatome” consisting of ORFs 37 

that are not annotated as genes. Despite lack of annotation, large-scale studies find that many 38 

noncanonical ORFs are translated to express stable proteins and show evidence of association with 39 

cellular phenotypes.6–10 Additionally, a handful of previously unannotated coding sequences, identified 40 

by RNA-seq or ribo-seq experiments, have now been characterized in depth, revealing that they play key 41 

roles in biological pathways and are important to organism fitness.11–15 Yet, these well-studied examples 42 

represent only a small fraction of the noncanonical translatome. Most noncanonical translation could 43 

simply be biologically insignificant “translational noise” resulting from the imperfect specificity of 44 

translation processes.16–19 Alternatively, thousands of missing protein-coding genes that contribute to 45 

phenotype and fitness could be hidden in the noncanonical translatome.  46 

A common and powerful approach to identifying biologically significant genomic sequences is to look for 47 

evidence of selection.20–22 Many canonical genes were annotated on the basis of such evidence23,24, and 48 

this approach has also been applied to noncanonical ORFs detected by ribo-seq.25–28 However, in the 49 

case of noncanonical translation, evolutionary analysis is often limited by a lack of sufficient statistical 50 

power to confidently detect selection. Most noncanonical ORFs are much shorter than canonical 51 

genes7,12,29, thus having fewer genetic variants that can be analyzed for evolutionary inference. As a 52 

result, short coding sequences are sometimes missed by genome-wide evolutionary analyses despite 53 

long-term evolutionary conservation.13,30 It is especially challenging to detect selection among 54 

noncanonical ORFs that are evolutionarily novel, as a short evolutionary history also provides less time 55 

for enough genetic variants to accumulate the signatures that allow for statistically distinguishing 56 

selective from neutral evolution.31 Several young genes of recent de novo origin (i.e., coding genes that 57 

evolved from previously nongenic sequences) have been discovered from within the noncanonical 58 

translatome.3,32,33  59 

In addition to the challenges short ORF length poses for detection of selection, it also poses challenges 60 

for unequivocal detection of translation in the first place. Microproteins are often missed by most 61 
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proteomics techniques, though specialized methods have had some success.9,10,34–36 In ribo-seq data, the 62 

most robust evidence of translation comes from a pattern of triplet periodicity in reads corresponding to 63 

the progression of the ribosome across codons.6,37,38 Ribo-seq analysis methods are less capable of 64 

detecting translation of short ORFs, as they contain fewer positions to use to establish periodicity.39 The 65 

low expression levels of some noncanonical ORFs further increases the difficulties in identification.3,27 66 

Perhaps as a result of these limitations, less than half of the noncanonical ORFs detected as translated in 67 

humans are reproducible across studies.31  68 

Here, we designed an approach to increase sensitivity in detection of both translation and selection 69 

among noncanonical ORFs. We address the challenges in detecting translation through the development 70 

of a ribo-seq analysis framework (iRibo) that identifies signatures of translation with high sensitivity and 71 

high specificity by integrating data across hundreds of experiments from many published studies. This 72 

facilitates detection of sequences that are short or poorly expressed. We address the challenges in 73 

detecting selection through a comparative genomics framework that analyzes translated sequences 74 

collectively across evolutionary scales within- and between-species.  75 

We applied our approach to define a “reference translatome” for the model organism Saccharomyces 76 

cerevisiae and to characterize the biological significance of noncanonical ORFs. Using iRibo, we identified 77 

~19,000 noncanonical ORFs translated at high confidence and established the dependence of 78 

noncanonical translation on both genomic context and environmental condition. Using genomic data 79 

both within strains of S. cerevisiae and across budding yeast species40,41, we identified a handful of 80 

undiscovered conserved genes within the yeast noncanonical translatome. However, we find that most 81 

of the yeast noncanonical translatome is evolutionarily young and of de novo origin, having emerged 82 

recently from noncoding sequence. These young ORFs differ greatly from conserved genes in their 83 

length, amino acid composition, and expression level, and show no signs of purifying selection. 84 

Nevertheless, we report experimental evidence based on fluorescent protein tagging and conditional 85 

loss-of-function fitness measurements showing that translation of evolutionarily young noncanonical 86 

ORFs can generate stable protein products and affect cellular phenotypes. We thus propose that much 87 

of the noncanonical translatome is composed of neither translational noise nor conserved genes, but 88 

rather of a distinct class of evolutionarily short-lived coding sequences with important biological 89 

implications. This “transient translatome” is larger than, and categorically distinct from, the conserved 90 

translatome made mostly of canonical protein-coding genes that have been studied for decades.   91 

Results 92 
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An integrative approach to defining the translatome 93 

We designed iRibo to detect translation events with high sensitivity and high specificity. High sensitivity 94 

is achieved through integration of ribo-seq data across hundreds of diverse experiments, which provides 95 

sufficient read depth for detection of translated ORFs that are short or weakly expressed. High 96 

specificity is achieved through the use of three nucleotide periodicity as the sole basis for translation 97 

inference. Three nucleotide periodicity corresponds to the progression of the ribosome codon by codon 98 

across a transcript, a dynamic unique to translation. Three nucleotide periodicity is therefore robust 99 

against false inference of translation from other sources of ribo-seq reads.37,38,42 High specificity is 100 

further achieved by controlling confidence levels using an empirical false discovery rate approach that 101 

relies on minimal modeling assumptions. iRibo consists of four components (Figure 1A). First, a set of 102 

“candidate” ORFs that could potentially be translated are identified in the genome. Second, reads from 103 

multiple ribo-seq experiments are pooled and mapped to these ORFs. Third, the translation status of 104 

each candidate ORF is assessed based on whether the reads mapping to the ORF exhibit a pattern of 105 

triplet nucleotide periodicity according to a binomial test. Finally, a list of translated ORFs is constructed 106 

with a specified false discovery rate, derived from applying the same translation calling method on a 107 

negative control set constructed to exhibit no genuine signatures of translation.   108 
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 109 

Figure 1: The iRibo framework enables detection of thousands of noncanonical translated sequences. 110 
A) The iRibo framework. 1) Candidate ORFs, both canonical (cORFs; red) and noncanonical (nORFs; blue), 111 
are identified in the genome. 2) Reads aggregated from published datasets are then mapped to these 112 
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ORFs. 3) Translation is inferred from triplet periodicity of reads. 4) The false discovery rate is estimated 113 
by scrambling the ribo-seq reads of each ORF and then assessing periodicity in this scrambled set. B) 114 
iRibo identifies translated ORFs that are undetectable in any single experiment. Mapped ribo-seq reads 115 
(y-axis) across an example nORF located on chromosome II, 604674-604748 (x-axis). The top five graphs 116 
correspond to five individual experiments with reads mapping to the ORF while the bottom graph 117 
includes all reads integrated across all experiments. Reads are colored according to their position on the 118 
codon. C) iRibo identifies 18,953 translated nORFs at 5% false discovery rate. The number of nORFs 119 
found to be translated using iRibo (y-axis) at a range of p-value thresholds (x-axis) is shown as a solid 120 
blue line. Translation calls for a negative control set, constructed by scrambling the actual ribo-seq reads 121 
for each nORF, is also plotted (dashed blue line). The dashed vertical line indicates false discovery rate of 122 
5% among nORFs. D) iRibo identifies 5,364 cORFs. The number of cORFs found to be translated using 123 
iRibo at a range of p-value thresholds, contrasted with negative controls constructed by scrambling the 124 
ribo-seq reads of each cORF. 125 

 126 

iRibo can be applied to a set of ribo-seq experiments conducted under a single environmental condition 127 

to identify ORFs that are translated under that condition. Alternatively, iRibo can be deployed on a 128 

broader set of ribo-seq experiments conducted in many different contexts to construct a “reference 129 

translatome” consisting of all elements within a genome with sufficient evidence of translation.  130 

We used iRibo to identify translated ORFs across the S. cerevisiae genome (Supplementary Figure 1). 131 

First, we constructed the set of candidate ORFs by collecting all genomic sequences at least three 132 

codons in length that start with ATG and end with a stop codon in the same frame. For ORFs overlapping 133 

in the same frame, only the longest ORF was kept. Each candidate ORF was classified either as canonical 134 

(cORF), if it was annotated as “verified,” “uncharacterized,” or “transposable element” in the 135 

Saccharomyces Genome Database (SGD)43 or as noncanonical (nORF), if it was annotated as “dubious,” 136 

“pseudogene,” or was unannotated. We excluded nORFs that overlap cORFs on the same strand. This 137 

process generated a list of 179,441 candidate ORFs: 173,868 nORFs and 5,573 cORFs. We assessed 138 

translation status for candidate ORFs using data from 412 ribo-seq experiments across 42 studies 139 

(Supplementary Table 1, Supplementary Table 2).  140 

As expected, integrating data from many experiments allowed for identification of translated ORFs that 141 

would otherwise have too few reads in any individual experiment (Figure 1B). Setting a confidence 142 

threshold to ensure a 5% false discovery rate (FDR) among nORFs, we identified 18,953 nORFs (Figure 143 

1C) as translated along with 5,364 cORFs (Figure 1D), for a total of 24,317 ORFs making up the yeast 144 

reference translatome. This corresponds to an identification rate of 99% for “verified” cORFs, 77% for 145 

“uncharacterized” cORFs, 37% for “dubious” nORFs and only 11% for unannotated nORFs (Figure 2A). 146 

Despite the low rate of identified translation, unannotated nORFs make up a large majority of translated 147 
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sequences (Figure 2B). In general, translated cORFs are much longer (Figure 2C) and translated at much 148 

higher rates (Figure 2D) than translated nORFs.  149 
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 150 

Figure 2: The noncanonical yeast translatome is larger than the canonical. A) A majority of cORFs, and 151 

a minority of nORFs, are translated. The percent of ORFs (y-axis) in each Saccharomyces Genome 152 
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Database annotation class that are detected as translated by iRibo, with canonical classes indicated in 153 

red and noncanonical in blue. B) Unannotated nORFs make up a large majority of translated sequences. 154 

The number of ORFs (y-axis) of each annotation class (x-axis) that are detected using iRibo. C) nORFs are 155 

shorter than cORFs. ORF length distributions for translated cORFs and nORFs. D) nORFs are translated at 156 

lower rates than cORFs. Distribution of translation rate (in-frame ribo-seq reads per base) for translated 157 

cORFs and nORFs. E) Translation calls are highly reproducible. For six large studies (y-axis), the 158 

proportion of nORFs identified using reads from that study that are replicated using reads from the 159 

largest study, Gerashchenko et al. 201444 (x-axis). Random expectation is the proportion that would be 160 

expected to replicate by chance. F) CHX facilitates detection of translated nORFs. Ratio of total ribo-seq 161 

read counts mapping to cORFs or nORFs in experiments with vs. without CHX treatment. Note that the 162 

same number of total reads are sampled from each condition. G) nORFs identified as translated only 163 

with CHX nevertheless show preference for the first codon position in its absence. Among nORFs 164 

identified as translated by iRibo only in the CHX condition, all codons among these nORFs are classed 165 

based on which of the three positions in the codon have the most reads from experiments without CHX.  166 

To assess replicability in translation calls for nORFs, we applied iRibo separately to each of the largest 167 

individual studies by read count. We then counted, among the nORFs that could be inferred to be 168 

translated using only the reads in each study, how many were also found in the largest study, 169 

Gerashchenko and Gladyshev, 2014.44 For all studies, at least 75% of detected ORFs were also detected 170 

in the largest study (Figure 2E). In general, translation rates among ORFs were highly correlated among 171 

independent studies (Supplementary Figure 2). These observations demonstrate that noncanonical 172 

translation patterns are highly reproducible, suggesting that they are driven by regulated biological 173 

processes rather than technical artifacts or stochastic ribosome errors. 174 

A large fraction of ribo-seq experiments use the translation elongation inhibitor cycloheximide (CHX). 175 

This drug is known to influence ribo-seq results in several ways.44–46 We therefore wished to specifically 176 

examine whether the size of the noncanonical translatome we identified could have been artificially 177 

inflated by CHX usage. To this aim, we compared translation signatures from experiments with (N=139) 178 

and without (N=170) CHX, randomly sampling the same number of reads from both groups of 179 

experiments. We observed a large enrichment in ribo-seq read counts among nORFs with CHX 180 

treatment (p < 10-10, Fisher’s exact test, Figure 2F), resulting in 56% more nORFs identified as translated 181 

(p < 10-10, Fisher’s exact test). The nORFs identified as translated only with CHX treatment nevertheless 182 

displayed a strong collective signal of triplet periodicity (i.e., preferential mapping to the first position in 183 

the codon) in experiments without CHX treatment when reads were aggregated across all such nORFs 184 

(Figure 2G). These results indicate that CHX treatment aids detection of translation events that also 185 

occur but are more difficult to detect without CHX.  186 

Noncanonical translation patterns depend on genomic and environmental context  187 
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We examined to what extent translation of nORFs depends on genomic context. We classified nORFs as: 188 

upstream nORFs (uORFs) located on the 5’ untranslated regions of transcripts containing cORFs; 189 

downstream nORFs (dORFs) located on the 3’ untranslated regions of transcripts containing cORFs; 190 

intergenic nORFs that do not share transcripts with cORFs (independent);  nORFs antisense to a cORF 191 

and located entirely within the bounds of that cORF (antisense full overlap); nORFs overlapping the 192 

boundaries of a cORF on the opposite strand (antisense partial overlap) (Figure 3A). Additionally, for 193 

nORFs sharing a transcript with an RNA gene, the nORF was classified based on the type of RNA gene. 194 

The transcripts used for these classifications were derived from the TIF-seq data collected by Pelechano 195 

et al. 201447, which provide transcript start and end sites. 196 
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 197 

Figure 3: Noncanonical translation patterns depend on both genomic and environmental context. A) 198 
Potential genomic contexts for nORFs in relation to nearby canonical genes. Transcripts are defined from 199 
published TIF-seq data47. B) Counts of translated nORFs identified by iRibo (y-axis) in each considered 200 
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genomic context (x-axis), determined by which elements share a transcript with the nORF and its 201 
position within the transcript. For nORFs that share a transcript with RNA genes, the annotation of the 202 
RNA gene is specified. C) Proportion of nORFs detected as translated by iRibo (y-axis) in each genomic 203 
context considered, among nORFs completely covered by a TIF-seq transcript (x-axis). D) Amino acid 204 
composition of translated nORFs differs from that of translated cORFs and depends on genomic context. 205 
Amino acid frequencies among predicted protein products of translated nORFs in each genomic context 206 
and of cORFs. The start codon methionine is excluded from frequency estimates. E) Amino acid 207 
composition of translated nORFs is similar to that of context-matched controls. For each genomic 208 
context, the amino acid frequency of translated nORFs relative to that of length-matched untranslated 209 
nORFs in that same context. The start codon methionine is excluded from frequency estimates. F) More 210 
nORFs are identified as translated in minimal than rich media. Number of translated nORFs identified (y-211 
axis) for experiments on yeast grown in either minimal (SD, solid line) or rich media (YPD, dashed line) at 212 
a range of read depths (x-axis). For each read depth, reads are sampled at random from experiments in 213 
each condition. G) For each nORF called translated by iRibo in minimal media (SD), rich media (YPD), or 214 
both, the log reads per base in each condition is indicated. Total read count in each condition was held 215 
constant by randomly sampling reads from YPD experiments until the read count in SD experiments was 216 
matched. nORFs with significantly more reads in one condition than the other are colored, green for SD 217 
and brown for YPD. Lists of nORFs with significantly different translation rates were obtained as follows: 218 
p-values for differential translation of each nORF were calculated from Fisher’s exact test on in-frame 219 
ribo-seq reads mapping to the ORF in each condition and a 5% FDR was set using the Benjamini-220 
Hochberg approach.48 An nORF had to be detected as translated in a condition by iRibo to be identified 221 
as more highly translated in that condition.  222 

 223 

Most nonoverlapping translated nORFs were independent (6,373, 52%) and around 47% shared a 224 

transcript with a cORF, including 3,512 uORFs and 2,278 dORFs, while 1.5% (186) shared a transcript 225 

with an annotated RNA gene (Figure 3B). Among antisense nORFs, 73% (4,844) overlapped fully with the 226 

opposite-strand gene while 27% (1,760) overlapped partially. 227 

We next calculated the frequency at which candidate nORFs were identified as translated for each 228 

genomic context (Figure 3C); for purposes of comparison, we considered only those nORFs fully 229 

contained within a TIF-seq transcript. Consistent with prior research49, uORFs were translated at 230 

significantly higher rates than other classes, with 30% of considered uORFs found to be translated 231 

compared to only 17% of  dORFs (p < 10-10, Fisher’s Exact Test) and 20% of independent nORFs (p < 10-10, 232 

Fisher’s Exact Test). nORFs antisense to cORFs and only partially overlapping them were translated at 233 

the lowest rate of any context, with a rate of 10% compared to 26% for fully overlapping antisense 234 

nORFs (p < 10-10, Fisher’s Exact Test).  235 

 236 

The amino acid frequencies of the proteins expressed from translated nORFs differ greatly from those of 237 

cORFs and depend on genomic context (p<10-10 for any comparison between cORF amino acid 238 
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frequencies and nORF frequencies in a given context, chi-square test; Figure 3D). The translation 239 

products of nORFs present a large excess of cysteine, phenylalanine, isoleucine, arginine, and tyrosine 240 

and deficiency in alanine, asparagine, glutamic acid, and glycine relative to cORFs. Notably, aside from 241 

arginine, the amino acids with large excess in nORFs relative to cORFs are all hydrophobic. Amino acid 242 

frequencies of nORFs appear to largely reflect underlying DNA sequence composition biases that differ 243 

between the distinct genomic contexts. Indeed, within each genomic context, amino acid frequencies of 244 

translated nORF are generally similar (with less than 15% difference in frequency) to that of length- and 245 

context- matched nORFs that lack evidence of translation, though they do show significant differences 246 

(p < 10-10 for all contexts, chi-square test; Figure 3E). The most striking differences include a large excess 247 

of methionine residues and a deficiency in tryptophan and glycine residues among translated nORFs 248 

compared to the untranslated control group. 249 

In addition to genomic context, we assessed how environmental context affects noncanonical 250 

translation. To this aim, we leveraged the power of iRibo to construct separate datasets of nORFs found 251 

translated in rich media (YPD) or in nutrient-limited minimal media (SD) (Supplementary Table 3). 252 

Previous research has reported an increase in detected noncanonical translation events relative to 253 

canonical translation events in response to starvation.1,3 Consistent with these results, more nORFs were 254 

identified as translated in minimal than in rich media at equal read counts (Figure 3F). Furthermore, 255 

2968 nORFs were supported by a significantly higher number of in-frame reads in minimal media than 256 

rich media while the converse was true for only 1265 nORFs (5% FDR, Fisher’s exact test with Benjamini-257 

Hochberg procedure48; Figure 3G). These results suggest that starvation conditions may increase 258 

noncanonical translation, or alternatively that noncanonical translation is less affected by the general 259 

translation inhibition that occurs in starvation conditions.50 Either way, these results support the 260 

hypothesis that nORF translation is regulated in response to changing environments.  261 

Two translatomes, transient and conserved 262 

Given the large numbers of nORFs translated in the yeast genome, we next sought to assess the 263 

biological significance of this translation by determining the extent to which these nORFs are evolving 264 

under selection. We assessed selection acting on nORFs, as well as on cORFs for purpose of comparison, 265 

across three evolutionary scales. At the population level, we analyzed 1011 distinct S. cerevisiae isolates 266 

sequenced by Peter et al. 2018.40 At the species level, we compared S. cerevisiae ORFs to their orthologs 267 

in the Saccharomyces genus, a taxon consisting of S. cerevisiae and its close relatives.51 To detect long 268 

term evolutionary conservation, we looked for homologs of S. cerevisiae ORFs among 332 budding yeast 269 
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genomes (excluding Saccharomyces) in the subphylum Saccharomycotina collected by Shen et al. 2018.41 270 

The power to detect selection on an ORF depends on the amount of genetic variation in the ORF 271 

available for evolutionary inference, which in turn depends on its length, the density of genetic variants 272 

across its length, and the number of genomes available for comparison. Given that many translated 273 

nORFs are very short (Figure 2C), we employed a two-stage strategy to increase power for detecting 274 

signatures of selection. First, we investigated selection in a set of “high information” ORFs for which we 275 

have sufficient statistical power to potentially detect selection. Second, we investigated the remaining 276 

“low information” ORFs in groups to quantify collective evidence of selection (Figure 4A). Group level 277 

analysis increases power to detect the presence of selection but does not enable identification of the 278 

individual ORFs under selection. The “high information” set consisted of the ORFs that 1) have 279 

homologous DNA sequence in at least four other Saccharomyces species and 2) have a median count of 280 

nucleotide differences between the S. cerevisiae ORF and its orthologs of at least 20. We found these 281 

criteria are sufficient to distinguish ORFs evolving under strong purifying selection (Supplementary 282 

Figure 3). Under this definition, 9,440 translated ORFs that do not overlap a different cORF (henceforth 283 

“nonoverlapping ORFs”, including 4,248 nORFs, and 5,192 cORFs) and 3,022 ORFs that overlap a cORF on 284 

the opposite strand (“antisense ORFs”, including 2,962 nORFs and 60 cORFs) were placed in the “high 285 

information” set. 286 
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Figure 4: Two distinct translatomes: transient and conserved. A) Selection inference analyses 288 
conducted on low-information and high-information ORFs to classify them as evolutionarily conserved, 289 
transient, or unclassified. B) A bimodal distribution of reading frame conservation (RFC) among high 290 
information translated ORFs. The distribution of RFC (x-axis), indicating how well reading frame of the 291 
ORF is conserved in the Saccharomyces genus, is shown for all translated high information ORFs (top), 292 
only cORFs (middle) and only nORFs (bottom). See Methods for details. Dashed lines separate RFC < 0.6 293 
and RFC > 0.8, the thresholds used to distinguish ORFs preserved or not preserved by selection. C) No 294 
evidence of purifying selection acting on low information nORFs. pN/pS and dN/dS ratios are shown for 295 
each group of ORFs. Low information nonoverlapping nORFs that lack a conserved homolog are divided 296 
into deciles of translation rate (in-frame ribo-seq reads per base), coding score, or ORF length, and into 297 
three genomic contexts. Untranslated nORFs are the set of all nORFs in the genome not called as 298 
translated by iRibo. Low information nonoverlapping cORFs are assembled into a single group, with the 299 
set of all nonoverlapping cORFs shown for comparison. Low information antisense nORFs were also 300 
assembled into a single group, with the set of all antisense cORFs shown for comparison. pN/pS is 301 
calculated from variation at each ORF codon among S. cerevisiae isolates.40 dN/dS is calculated among 302 
all codons that share the same frame between S. cerevisiae ORFs and aligned orthologous ORFs in S. 303 
paradoxus. Note that the displayed pN/pS and dN/dS values are not averages of these ratios among 304 
ORFs. Rather, synonymous and nonsynonymous variants among all ORFs in each class are counted, and 305 
a single ratio is calculated from the summed counts. Error bars indicate standard errors estimated from 306 
bootstrapping. The dashed blue line indicates a ratio of one, the expected ratio under neutral evolution. 307 
D) No evidence of distant homology for low information nORFs. The frequency of nORFs with weak 308 
TBLASTN matches (10-4 < e-value < .05) in each group of nORFs (dark bars) and negative controls (light 309 
bars) consisting of the sequences of the nORFs of each group randomly scrambled. Error bars indicate 310 
standard errors estimated from bootstrapping. E) ORFs that are translated yet evolutionarily transient 311 
make up 72% of the yeast reference translatome. The components of the translatome (transient, 312 
conserved, unclassified) are represented with area proportional to frequency. Each box represents sets 313 
of 15 ORFs. 314 

 315 

We attempted to detect purifying selection in the high information set within the Saccharomyces genus 316 

and within the Saccharomycotina subphylum. For the Saccharomyces analysis, we adapted reading 317 

frame conservation (RFC), a sensitive approach developed by Kellis et al. 200320 to distinguish ORFs 318 

evolving under selection from other ORFs in the yeast genome. RFC is an index ranging from 0 to 1 that 319 

indicates how well reading frame is conserved between an ORF in a given species (here, S. cerevisiae) 320 

and its orthologous sequences in related species (other species in the Saccharomyces genus). An RFC 321 

value of 1 indicates perfect agreement of reading frame, such that all bases that make up the first 322 

nucleotide in a codon in the S. cerevisiae ORF also make up the first nucleotide in a codon in each 323 

orthologous ORF. An RFC value of 0 indicates that all bases in the S. cerevisiae ORF align to bases with a 324 

different within-codon position in orthologous ORFs, or that the aligned bases exist outside of any ORF. 325 

We found a bimodal distribution of RFC among nonoverlapping ORFs in the yeast translatome, 326 

considering cORFs and nORFs together: 53.3% have RFC above 0.8 and 45.5% have RFC less than 0.6, 327 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2021.07.17.452746doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452746


` 

18 
 

with only 1.2% of ORFs intermediate between these values (Figure 4B). The bimodal distribution of RFC 328 

among translated ORFs is similar to the bimodal distribution observed among all candidate ORFs, 329 

regardless of translation status (Supplementary Figure 4A), as observed previously by Kellis et al. 2003.20 330 

The modes of the distribution largely correspond to annotation status, with 96.7% of cORFs having RFC > 331 

0.8 and 98.5% of nORFs having RFC < 0.6. This pattern holds when evaluated only in the last 100 bp of 332 

ORFs, suggesting that it is not affected by potential incorrect inference of nORF start positions 333 

(Supplementary Figure 4B). The clean separation between well-conserved and poorly-conserved ORFs 334 

indicate that most high-information ORFs can be straightforwardly classified into one of the two groups, 335 

and thus nearly all high-information nonoverlapping nORFs can be placed in the poorly-conserved class.  336 

High RFC among antisense ORFs does not demonstrate selection on the ORF itself, as it might be caused 337 

by selective constraints on the opposite-strand gene, but low RFC still indicates lack of purifying 338 

selection. A majority of antisense translated nORFs (64.1%) have RFC <0.6, indicating that most are not 339 

preserved by selection across the genus (Supplementary Figure 4C). Overall, we find no evidence for 340 

purifying selection acting on nORFs on a large scale.  341 

In light of the general correspondence between annotation and conservation, the exceptions are of 342 

interest: 110 cORFs had RFC < 0.6, and 13 nonoverlapping unannotated nORFs had RFC > 0.8. To further 343 

assess conservation among these two sets of ORFs, we performed a BLAST analysis (using both BLASTP 344 

and TBLASTN with default parameters) to search for homologs of each ORF among the budding yeast 345 

genomes assembled by Shen et al. 2018.41 Among the 110 cORFs with low RFC, 101 also had no detected 346 

homology to other S. cerevisiae genes or any budding yeast genome outside of Saccharomyces, 347 

indicating that these are likely annotated ORFs of recent de novo origin. For the 13 nORFs with high RFC, 348 

several additional lines of evidence suggest that these are indeed evolving under purifying selection 349 

(Table 1). For nine of the thirteen, we identified a homolog among budding yeast genomes outside of 350 

the Saccharomyces genus by either a BLASTP or TBLASTN search. The existence of a homolog in a 351 

distantly related species indicates that the ORF existed in the common ancestor of S. cerevisiae and that 352 

distant species, implying long-term preservation of the ORF by purifying selection in both lineages. We 353 

also performed pN/pS analysis for each ORF on S. cerevisiae isolates and dN/dS analysis for each ORF 354 

among the Saccharomyces genus species (Table 1). A pN/pS or dN/dS ratio significantly below 1 355 

indicates purifying selection on the ORF amino acid sequence among S. cerevisiae strains or among 356 

Saccharomyces genus species, respectively, while a ratio above 1 indicates positive selection. By these 357 

measures, two ORFs showed significant evidence of purifying selection by pN/pS and three by dN/dS 358 
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(Table 1). Thus, a small number of nORFs appear to be evolving under selection, indicating significant 359 

biological roles. 360 

We next assessed selection among the full set of nORFs (both high and low information) at the 361 

subphylum scale, searching for addition nORFs that exhibited long term conservation and thus purifying 362 

selection. Towards this end, we searched for distant homologs of all translated nonoverlapping S. 363 

cerevisiae nORFs using TBLASTN against budding yeast genomes in the Saccharomycotina subphylum, 364 

excluding species in the Saccharomyces genus. After excluding matches that appeared non-genic or 365 

pseudo-genic (Supplementary Figure 5) we identified a single additional nORF with both distant 366 

TBLASTN matches and recent signatures of purifying selection (dN/dS = 0.5, p=.039 for test of difference 367 

from 1.0): YBR012C, annotated as “dubious” on SGD. Thus, combining the 13 nORFs that appeared 368 

conserved by RFC analysis and the single additional nORF found using TBLASTN, we identified 14 369 

translated nORFs that show evidence of preservation by purifying selection (Table 1).  370 

To analyze collective evidence of selection among “low information” ORFs, we first divided low 371 

information nonoverlapping nORFs (7,855 nORFs, after excluding those with homology to conserved S. 372 

cerevisiae cORFs) according to properties that we expected to be potentially associated with selection: 373 

rate of translation (as measured by ribo-seq reads mapped to the first position within codons divided by 374 

the length of the ORF), coding score28,52 (a measure of sequence similarity to annotated coding 375 

sequences), ORF length, and genomic context. For each group, we calculated the pN/pS ratio among 376 

1,011 S. cerevisiae isolates40 and the dN/dS ratio based on alignments of the S. cerevisiae ORFs with their 377 

orthologous DNA sequence in S. paradoxus. We also analyzed low information nonoverlapping cORFs 378 

(22 cORFs) in the same manner. For low information antisense nORFs (3642 nORFs; only 2 cORFS fell in 379 

this category and were not analyzed), we calculated the pN/pS and dN/dS ratios restricted to 380 

substitutions that were synonymous on the opposite-strand cORF.53,54 Unlike the RFC, dN/dS and pN/pS 381 

analyses conducted above on individual high information ORFs, these analyses were conducted by 382 

aggregating substitutions among all low information ORFs in each group to assess evidence for selection 383 

(i.e., a ratio significantly different from 1) within the group as a whole. We expected that, if low 384 

information nORFs were evolving under selection, then more highly translated ORFs, longer ORFs, and 385 

ORFs with coding scores more similar to conserved genes, would be enriched in biologically relevant 386 

nORFs and thus show stronger signatures of selection. Low information nonoverlapping cORFs did show 387 

collective pN/pS and dN/dS ratios significantly below 1, indicating that some ORFs in this group are 388 

evolving under purifying selection (Supplementary Table 4, Figure 4C). In contrast, for all groups of low 389 
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information nORFs examined, we observed no significant difference in the pN/pS or dN/dS ratio from 1, 390 

providing no evidence for either purifying or positive selection (Supplementary Table 4, Figure 4C).  391 

Finally, we assessed collective evidence of long-term evolutionary conservation in each group. To do 392 

this, we calculated the frequency of weak TBLASTN matches (e-values between 10-4 and .05, above our 393 

threshold for homology detection at the individual level) of ORFs in each group to the Saccharomycotina 394 

subphylum genomes outside of Saccharomyces as compared to a negative control set consisting of 395 

scrambled sequences of the ORFs in each group. Applying this strategy to the full set of 362 396 

nonoverlapping cORFs that lacked TBLASTN matches outside Saccharomyces at the e-value < 10-4 level, 397 

we found a large excess of weak matches relative to controls (p=.0001, Fisher’s exact test; 398 

Supplementary Figure 6), demonstrating the ability of this approach to detect faint signals of homology 399 

within a group of ORFs. However, we identified no significant difference in the frequency of weak 400 

TBLASTN hits between any nonoverlapping nORF group and scrambled controls (Figure 4D), nor among 401 

nonoverlapping nORFs overall (p>.05, Fisher’s exact test). The lack of a significant result does not 402 

exclude the possibility that a small subset of short conserved nORFs could be lost in the noise of a much 403 

larger set of nORFs without distant homology. However, our TBLASTN, dN/dS and pN/pS analyses 404 

altogether indicate that ORFs evolving under strong purifying selection are not a major component of 405 

the yeast noncanonical translatome.  406 

Overall, our analyses distinguish two distinct yeast translatomes: a conserved, mostly canonical 407 

translatome with intact ORFs preserved by selection; and a mostly noncanonical translatome where 408 

ORFs are not preserved over evolutionary time. This distinction is rooted in evolutionary evidence rather 409 

than annotation history. We thus propose to group the translated ORFs that showed neither evidence of 410 

selection nor homology to conserved ORFs in our high-information and low-information sets as the 411 

“transient translatome.” The “transient translatome” designation indicates membership in a set of ORFs 412 

that are expected to exist in the genome for only a short time on an evolutionary scale, though we 413 

cannot be certain that any particular translated ORF that currently exists in the yeast genome will be 414 

rapidly lost. The transient translatome includes 4,051 nonoverlapping and 1,923 antisense nORFs 415 

identified as not preserved by selection using RFC analyses and having no conserved homologs, along 416 

with 86 nonoverlapping and 15 antisense cORFs (total 101) matching the same criteria. Also included are 417 

7,855 nonoverlapping and 3,644 antisense nORFs that lack sufficient information to analyze at the 418 

individual level but were found to show no selective signal in group-level analyses. Together, this set of 419 
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17,574 ORFs that are translated yet likely evolutionarily transient makes up 72% of the yeast reference 420 

translatome (Figure 4E).     421 

Transient cORFs are representative of the transient translatome overall 422 

By general theory and practice in evolutionary genomics, the lack of selective signal suggests that the 423 

transient translatome does not meaningfully contribute to fitness.55 Surprisingly, however, 101 cORFs 424 

belong to the transient set, suggesting that some transient ORFs have phenotypes. To assess whether 425 

these cORFs are representative of the transient translatome overall, we compared their evolutionary 426 

and sequence properties with those of transient “dubious” nORFs (annotated but presumed 427 

nonfunctional) and transient unannotated nORFs. We found transient cORFs, transient dubious nORFs 428 

and transient unannotated nORF to all have pN/pS ratios indistinguishable from 1.0 (Figure 5A), 429 

providing no evidence for purifying selection. Similarly, the average nucleotide diversity (mean number 430 

of nucleotide differences per site between pairs of isolates) of transient cORFs was indistinguishable 431 

from that of transient nORFs or untranslated controls, and much higher than that of conserved cORFs 432 

(Figure 5B). In addition, no class of transient ORFs showed differences from each other in RFC between 433 

S. cerevisiae and S. paradoxus (Figure 5C), rate of translation (Figure 5D) or coding score (Figure 5E).  434 
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 435 

Figure 5: Canonical and noncanonical transient ORFs are similar except for their length. Properties of 436 
transient cORFs (n=86), transient dubious nORFs (n=25), transient unannotated nORFs (n=12,160), 437 
untranslated controls (n=100) and conserved cORFs (n=5130). Untranslated controls consist of 438 
nonoverlapping ORFs that would be grouped in the transient class (RFC <.6) but are not inferred to be 439 
translated based on ribo-seq evidence. Conserved cORFs are nonoverlapping cORFs with RFC >.8. All 440 
groups are restricted to nonoverlapping ORFs. Error bars represent standard error. Stars indicate 441 
significant differences from untranslated controls by permutation test: P-value <.001: ***. A) pN/pS 442 
values for each group among S. cerevisiae strains. B) Average nucleotide diversity (π) among each group. 443 
C) Average reading frame conservation between S. cerevisiae and S. paradoxus ORFs. D) Average ribo-444 
seq reads per base (logged), considering only in-frame reads. Unannotated nORFs and untranslated 445 
controls are sampled to match the length distribution of transient cORFs. E) Coding scores for each 446 
group. F) ORF lengths in nucleotides for each group. 447 
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 448 

The only distinguishing property between classes of transient ORFs was their length: annotated 449 

transient cORFs and transient “dubious” nORFs are much longer on average than unannotated transient 450 

nORFs (Figure 5F). This is a consequence of the history of annotation of the S. cerevisiae genome, where 451 

a length threshold of 300 nt was set for annotation of ORFs.56,57 The sharp 300 nt threshold is still clearly 452 

reflected in annotations. For example, genome annotations include 96% of nonoverlapping transient 453 

ORFs in the 300-400 nt range (55/57), but only 4% in the 252-297 nt range (4/101). Given that transient 454 

nORFs resemble transient cORFs in all respects besides length, we hypothesized that numerous never-455 

studied transient nORFs are just as likely to have phenotypes as transient cORFs.  456 

Transient ORFs are detected in the cell and mediate diverse phenotypes 457 

To gain further insights into the potential biological roles of transient ORFs, we examined published 458 

reports about annotated ORFs (transient cORFs and transient dubious nORFs) in the S. cerevisiae 459 

experimental literature and performed additional experiments to investigate transient unannotated 460 

nORFs. We examined whether transient ORF products could be detected experimentally, whether they 461 

affect phenotypes, and whether they interact with specific biological pathways. 462 

We first assessed whether the proteins encoded by transient ORFs can be detected in the cell. We 463 

examined the CYCLoPs database58,59, the C-SWAT tagging library60, and the YeastRGB database61, which 464 

contain collections of fluorescently tagged proteins expressed from their native promoters and 465 

terminators, including both cORFs and dubious nORFs. Together these studies detected expression of a 466 

fluorescent protein product for 90 of 93 (97%) transient cORFs tested, along with 37 of 41 (90%) 467 

transient dubious nORFs tested (Figure 6A). For comparison, we C-terminally tagged 21 highly expressed 468 

unannotated transient nORFs with mNeonGreen at their endogenous locus and examined their 469 

expression using microscopy. We detected 8 of 21 tagged nORF proteins (38%) (Figure 6A-B, 470 

Supplementary Figure 7). Thus, translation of tagged proteins can be detected for both annotated and 471 

unannotated transient ORFs. 472 
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 473 

Figure 6: Transient nORFs and cORFs can be detected in the cell and exhibit phenotypes. A) Transient 474 
ORFs are detected by fluorescent microscopy. For cORFs or dubious nORFs, the proportion of proteins 475 
expressed by transient ORFs detected in the C-SWAT60, CYCLoPs59, or YeastRGB61 microscopy datasets 476 
out of those tested. For unannotated transient nORFs, the proportion detected by mNeonGreen tagging 477 
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in this study. Error bars indicate standard error of the proportion. B) Tagged unannotated transient 478 
nORFs show varied sub-cellular localizations. Microscopy images of unannotated transient nORFs taken 479 
at 100X. Left panel shows the expression of the nORFs tagged with mNeonGreen, middle panels the 480 
dyes CMAC Blue and MitoTracker Red for mitochondria and vacuoles identification, respectively, and 481 
the right panel the merge all the above channels with DIC. Top panel show the nORF (orf45629) with a 482 
cytosolic expression and the bottom panel the nORF (orf231865) with expression localizing to the 483 
mitochondria. C) Loss of transient nORFs can affect phenotype despite lack of evolutionary conservation 484 
The proportion of deletion mutants with reported loss-of-function phenotypes in two groups: transient 485 
cORFs in published deletion mutant screens, and transient nORFs assayed in this study. Reported 486 
phenotypes in published data was taken from literature associated with each ORF on SGD. In this study, 487 
deleterious deletion mutant phenotypes were identified from a high-throughput colony fitness screen in 488 
six stress conditions using a 5% FDR threshold. D) Transient ORFs engage in epistatic relationships. The 489 
percent of transient ORFs and nonessential genes with at least one genetic interaction at given 490 
threshold are shown. Differences between groups were tested using Fisher’s exact test. E) Genetic 491 
interactions of the transient ORF YER175W-A. Five interactors are related to exosome (striped circles). F) 492 
Presence of phenotypes among annotated transient ORFs. “Protein detected” indicates that the ORF 493 
product was found in either the C-SWAT or CYCLoPs database.  Phenotypes of deletion collection, 494 
deletion and overexpression screens were taken from reported findings in the yeast experimental 495 
literature (Supplementary Table 5). “Genetic interaction” indicates a statistically significant genetic 496 
interaction with Ɛ< -0.2, and “GO-associated interactors” indicates a GO enrichment was found among 497 
significant interactors at 5% FDR. 498 

 499 

We next examined the evidence that transient ORFs affect phenotype. Five transient cORFs have been 500 

studied in depth. Two of these, MDF162 and YBR196C-A63, have been previously described as having 501 

emerged de novo from non-genic sequences. MDF1 inhibits the mating pathway in favor of vegetative 502 

growth62,64 and YBR196C-A is an ER-located transmembrane protein whose expression is beneficial 503 

under nutrient limitations.65 The remaining three have been experimentally characterized, although 504 

their evolutionary properties were not analyzed in the corresponding studies: HUR1 plays an important 505 

role in non-homologous end-joining DNA repair66; YPR096C regulates translation of PGM267; ICS3 is 506 

involved in copper homeostasis.68 These cases demonstrate that some  transient ORFs do affect 507 

phenotypes and have the potential to play important biological roles. 508 

To determine whether transient cORFs that are not well described also affect phenotypes, we examined 509 

all literature listed as associated with the ORF on SGD. Many of these transient cORFs have direct 510 

evidence of phenotype (Supplementary Table 5). Of 101 transient cORFs, 45 were reported to have 511 

deletion mutant phenotypes (i.e., a phenotype observed when the ORF is deleted) and 12 to have 512 

overexpression phenotypes. Overall, we found phenotypes reported in the literature for 50 of 101 513 

transient cORFs (50%).  514 
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As unannotated transient nORFs have not been systematically investigated for phenotype, we sought to 515 

experimentally determine whether these ORFs too might have deletion mutant phenotypes. We thus 516 

conducted a deletion mutant screen of 49 unannotated transient nORFs selected for high translation 517 

rate and to avoid intersecting cORFs, annotated ncRNAs, or promoters (200 bp upstream of canonical 518 

genes). We fully deleted the nORF using homologous recombination and each strain was assayed for 519 

colony growth in seven conditions. Eight nORF deletion mutant strains showed deleterious phenotypes 520 

in at least one condition at a 5% FDR (Figure 6C, Supplementary Table 6). Thus, loss of transient nORFs, 521 

as with cORFs, can affect phenotype despite lack of evolutionary conservation. 522 

To begin to understand the specific biological processes in which transient ORFs might be involved, we 523 

leveraged the large yeast genetic interaction network assembled in Costanzo et al. 2016.69 This dataset 524 

includes 75 non-overlapping transient cORFs and 9 non-overlapping dubious transient nORFs. Genetic 525 

interaction strength, Ɛ, measures the difference between the observed fitness of a strain in which two 526 

genes are deleted and the expected fitness given the fitness of the two single gene deletion strains; a 527 

negative value of high magnitude suggests that the two mutated genes are involved in related 528 

processes. Of the 84 transient ORFs in the dataset, 79 (94%) have at least one negative genetic 529 

interaction at the high-stringency cut-off defined by Costanzo et al.69 (Ɛ<-0.2 and p-value<0.05) and 51 530 

(61%) have synthetic lethal interactions (Ɛ<-0.35 and p-value<0.05) as defined in that study (Figure 6D). 531 

This was only a slightly lower rate than for conserved non-essential ORFs, 98% of which had negative 532 

interactions at the high stringency cut-off and 76% of which had synthetic lethal interactions. At the high 533 

stringency threshold, 27 transient ORFs were found to interact with groups of related genes enriched in 534 

specific gene ontology (GO) terms (5% FDR; Supplementary Table 7). For example, the interactors of 535 

YER175W-A are associated with the GO category “cryptic unstable transcript (CUT) metabolic processes” 536 

with high confidence, and five of its eleven interactors are components or co-factors of the exosome 537 

(Figure 6E), indicating likely involvement in CUT degradation or a closely related post-transcriptional 538 

regulation pathway. Other enrichments included diverse processes such as “mating projection tip” or 539 

“Golgi sub-compartment”. In contrast, when we applied GO enrichment analysis to the full set of genes 540 

that interact with any transient ORF, no significant enrichment was observed. These results suggest that 541 

transient ORFs in general do not participate in one shared biological process, but rather are involved in a 542 

wide variety of cellular processes. 543 

Overall, we uncovered evidence that 131 of 250 (53%) annotated transient ORFs have at least one 544 

indicator of biological significance (detection of a protein product, a reported phenotype in a screen, or 545 
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a genetic interaction in the Costanzo et al. 201669 network) (Figure 6F). Additionally, we demonstrate 546 

that unannotated transient ORFs encode proteins that can be detected in the cell (38% of tested in this 547 

study) and influence cellular fitness when deleted (17% of tested in this study). Given that this class has 548 

received almost no study compared to the great number of experiments that have been conducted on 549 

cORFs, the number of transient ORFs with biological relevance may be substantially larger than that 550 

which has been annotated.  551 

A limitation on much of the experimental evidence available on deletion mutant phenotypes is that 552 

most deletion mutant and genetic interaction screens are based on a full gene replacement strategy in 553 

which the entire ORF is lost, leaving the possibility that some deletion phenotypes could be caused by 554 

loss of a ncRNA or a DNA regulatory element located at the same position as the ORF rather than loss of 555 

the ORF translation (Figure 7A). To examine this possibility, we constructed a set of strains where the 556 

ORF start codon ATG was replaced with an AAG codon while keeping the rest of the ORF intact. This set 557 

included three transient cORFs that have previously been characterized on the basis of overexpression 558 

or full deletion mutants, ICS368, YPR096C67, and YBR196C-A65, along with four transient nORFs that 559 

showed strong deleterious phenotypes in our full ORF deletion screen (Supplementary Table 8; HUR1 560 

and MDF1 were not tested because they overlap other cORFs). Each deletion strain was tested in seven 561 

environmental conditions. The single nucleotide ATG→AAG mutation caused significantly reduced 562 

colony size for all three transient cORFs tested and for three of four transient nORFs tested in at least 563 

one condition (Figure 7B). We gave these three nORFs systematic names YDL204W-A, YGR016C-A, and 564 

YNL040C-A. The remaining nORF, YDR073C-A, showed a weak beneficial phenotype from the ATG→AAG 565 

mutation in some conditions, as did two other nORFs, YGR016C-A and YNL040C-A. The largest growth 566 

reductions were observed from disabling translation in YDL204W-A: this strain reached only 64% of 567 

wildtype growth in hydroxyurea and 63% in high salt concentration, with a smaller reduction to 94% 568 

growth in rich media (YPDA). These growth defects were also observed in a liquid growth setting (Figure 569 

7C-E). To confirm that these phenotypes were caused by loss of the YDL204W-A protein rather than cis 570 

effects at the locus, we expressed the intact YDL204W-A ORF from a plasmid in the ATG→AAG mutant 571 

strain. Plasmid expression of the ORF fully restored the wildtype phenotype in the mutant strains (Figure 572 

7F-H), providing further evidence that blocking YDL204W-A translation causes a loss of function 573 

phenotype mediated by loss of the encoded protein.  574 

In our translation dataset, YDL204W-A has a translation rate at the top percentile among transient ORFs 575 

(Figure 7I), higher than 10% of cORFs. Comparing its sequence to the homologous region of other 576 
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Saccharomyces genus species, only S. paradoxus and S. mikatae have a homologous start codon, but a 577 

2bp insertion in S. cerevisiae results in a frameshift such that little of the ORF is shared in any other 578 

species (Figure 7I); thus, this ORF has a reading frame conservation score of only 0.2 (Table 2). The other 579 

transient ORFs with phenotypes induced by an ATG→AAG mutation also showed no signs of selection 580 

(Table 2). Thus, our results exemplify the potential for unannotated coding sequences with no evident 581 

evolutionary conservation to affect cellular phenotypes and fitness.  582 
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 583 

Figure 7: Translation inhibition of transient ORFs causes strong phenotypes. A) A two-step strategy for 584 
inhibiting nORF translation. An ORF may overlap a DNA regulatory element or an RNA with a noncoding 585 
function (Wildtype ORF), both of which are disrupted in a gene replacement strategy in addition to the 586 
loss of translation (Full gene replacement). This creates ambiguity in interpreting comparisons between 587 
deletion mutants and wildtype strains. Following a deletion screen using gene replacement, we used a 588 
second round of homologous recombination to restore either the full ORF (Restored ORF) or an ORF 589 
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with its start codon mutated from ATG to AAG (Translation inhibition). As these mutants differ only by 590 
this single base, the specific effects of translation inhibition can be inferred. B) Inhibiting translation of 591 
transient ORFs triggers colony growth phenotypes. The fitness of AAG mutants (translation inhibition) is 592 
shown for seven transient ORFs under stress conditions (colors). Fitness is assessed by comparing colony 593 
size between AAG mutants and ATG controls (restored ORFs). A cross symbol after the ORF names 594 
indicates unannotated nORFs assigned systematic names in this study. Relative fitness values 595 
significantly different from one are indicated as follows: *p<.05 **p<.01 ***p<.001. C-E) Deleterious 596 
impact of inhibiting translation of transient nORF YDL204W-A in a liquid growth assay. Liquid growth 597 
curve of a strain in which YDL204W-A translation is inhibited by mutating its start codon (AAG) and a 598 
strain with the initial codon as ATG in: 1M NaCl (C), 100mM hydroxyurea (D), and YPDA (E), with three 599 
technical replicates for each strain.  F-H) Expression from plasmid restores wildtype growth to YDL204W-600 
A start codon mutants. Liquid growth curves of an attempted rescue of the YDL204W-A AAG mutant by 601 
expressing intact YDL204W-A from a plasmid. The AAG start codon mutants were transformed with 602 
either an empty plasmid or a plasmid expressing the intact ORF; the ATG controls were transformed 603 
with an empty plasmid. All strains were then assayed for growth in liquid media in either 1M NaCl (F), 604 
100 mM hydroxyurea (G) or YPDA (H) with three technical replicates each. The shaded area covers 1 SD 605 
from the mean OD value among replicates. I)  YDL204W-A is translated and not conserved. Top: 606 
ribosome profiling reads mapped by iRibo to YDL204W-A show triplet periodicity. Bottom: alignment of 607 
the YDL204W-A ORF against homologous DNA in the Saccharomyces genus.  608 

 609 

Discussion 610 

Since the advent of ribosome profiling, it has been evident that large parts of eukaryotic genomes are 611 

translated outside of canonical protein-coding genes1, but the nature and full significance of this 612 

translation has remained elusive. To facilitate study of this noncanonical translatome, we developed 613 

iRibo, a framework for integrating ribosome profiling data to sensitively detect ORF translation across a 614 

variety of environmental conditions. The iRibo framework can be applied to any species and set of 615 

candidate ORFs of interest. Here, we deployed iRibo to map a high confidence yeast reference 616 

translatome almost five times larger than the canonical translatome. This resource can serve as the basis 617 

for further investigations into the yeast noncanonical translatome, including the prioritization of nORFs 618 

for experimental study. 619 

We designed iRibo to be highly sensitive at detecting patterns of triplet periodicity through the genome, 620 

but there are some limitations to our strategy. We focused exclusively on ORFs with AUG start codons 621 

and therefore missed the non-AUG codons that are sometimes used as starts.70 Similarly, we did not 622 

consider ORFs overlapping canonical genes in a different frame on the same strand, though some such 623 

nORFs are known to be translated.71,72 Finally, candidate ORFs were selected as the longest ORF in any 624 

reading frame, which means the true boundaries of identified ORFs could be shorter than described. We 625 
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expect these limitations to cause underestimation of the number of translated nORFs, suggesting that 626 

the true count is even larger than identified here. 627 

We used the iRibo yeast reference translatome to address a fundamental question: to what extent does 628 

the noncanonical translatome consist of conserved coding sequences that were missed in prior 629 

annotation attempts? In a thorough evolutionary investigation, we identified 14 translated nORFs that 630 

show evidence of being conserved under purifying selection. Only one of these ORFs, YJR107C-A, 631 

appears to have been previously described34, though it was not annotated on Saccharomyces Genome 632 

Database at the time of our analysis. Thus, even a genome as well-studied as S. cerevisiae’s contains 633 

undiscovered conserved genes, likely missed in prior analyses due to difficulties in analyzing ORFs of 634 

short length. These 14 nORFs are, however, the exception: the great majority of translated nORF show 635 

no signatures of selection, comprising a large pool of evolutionarily transient translated sequences.  636 

The yeast genome thus encodes two translatomes, one conserved, one transient. The conserved 637 

translatome consists of coding sequences that are preserved by strong purifying selection and usually 638 

have a long evolutionary history. They tend to be relatively long, well expressed, and with sequence 639 

properties highly distinct from noncoding sequences. The transient translatome, by contrast, is 640 

evolutionarily young, of recent de novo origin from previously noncoding sequence and still similar to 641 

noncoding sequences in nucleotide composition. Evolving in the absence of strong purifying selection, 642 

transient translated ORFs appear to be frequently lost to disrupting mutations, only to be replaced by 643 

other transient translated ORFs upon translation-enabling mutations. Despite these profound 644 

differences, transient translated ORFs, like conserved ones, can affect the phenotype and fitness of the 645 

organism. Several well-characterized coding sequences unique to S. cerevisiae, such as HUR166 and 646 

MDF162, play key roles in biological processes through encoding lineage-specific proteins that physically 647 

interact with conserved proteins. Additionally, around 100 transient ORFs are annotated as coding genes 648 

and have therefore been extensively screened; a majority express stable proteins and many have known 649 

loss-of-function phenotypes. Their genetic interaction patterns suggest involvement in a wide array of 650 

specialized cellular processes. Our experiments revealed that disabling the start codons of unannotated 651 

transient translated ORFs can cause large fitness reductions in stress conditions. The strength of the 652 

fitness reduction observed was highly dependent on the stressor applied in the environment, suggesting 653 

again specialized cellular roles. In some cases, disabling the start codon resulted in growth increases, 654 

perhaps indicating that disabling translation saved the cell energy.  655 
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Our work adds to the growing research on the roles noncanonical coding play across many species, 656 

including humans.7,73 We note that “noncanonical” is not a coherent biological category, as it simply 657 

indicates the class of sequences that have not been annotated in genome databases. We demonstrate 658 

that the division between “canonical” and noncanonical” translation in S. cerevisiae corresponds largely, 659 

but not perfectly, to a biological division between transient and conserved. It is this biological division 660 

that is fundamental: the 101 yeast canonical ORFs classified as transient have sequence and 661 

evolutionary properties nearly identical to noncanonical transient ORFs, except for sequence length, and 662 

should be placed in the same category. We can thus reclassify the translatome according to biology 663 

rather than annotation history. 664 

It is perhaps surprising that a coding sequence can affect organism phenotype despite showing no 665 

evidence of selection. However, this result is consistent with evidence from the field of de novo gene 666 

birth. Species-specific coding sequences have been characterized in numerous species.32 For example, 667 

Xie et al. 201974 identified a mouse protein contributing to reproductive success that experienced no 668 

evident period of adaptive evolution. Sequences that contribute to phenotype without conservation 669 

have also been described outside of coding sequences. Regulatory sequences, such as transcription 670 

factor binding sites, are a mix of relatively well-conserved elements and elements that are not preserved 671 

even between close species75; it is plausible that translated sequences also show such a division. There 672 

are several explanations for why translated ORFs may lack detectable signatures of selection. Most 673 

transient ORFs are expressed at much lower levels than canonical genes, and therefore may have 674 

minimal effects on phenotype. For those that do have large and beneficial effects in some 675 

environmental conditions, these may be balanced by deleterious effects in other conditions. Moreover, 676 

selection may occur, and be biologically important, below the limits of detectability for the genomic 677 

approaches we used. Our findings do not imply an absence of selective forces in shaping the patterns of 678 

noncanonical translation. Rather, the particular selective environment favoring expression of these 679 

sequences may be too short-lived to detect selection using traditional comparative genomics 680 

approaches. Previous research, such as the proto-gene model of de novo gene birth3, have proposed 681 

that recently emerged translated ORFs serve as an intermediary between noncoding sequences and 682 

mature genes. Our results add to the evidence that these ORFs provide many potential phenotypes from 683 

which selection could preserve beneficial ones for the long term.65 Still, the observation that even ORFs 684 

with phenotypes lack evidence of conservation at the population level suggests that there are important 685 

filters that prevent the vast majority of recently emerged translated ORFs, even those with beneficial 686 

phenotypes, from evolving into mature genes that are preserved over long evolutionary time. The 687 
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primary significance of the great majority of transient translated ORFs is in their biological activity over 688 

their short lifespans. 689 

The yeast reference translatome resource we constructed with iRibo is meant to facilitate community 690 

efforts to decipher the specific physiological implications of transient translated ORFs. Our proof-of 691 

concept analyses of subcellular localization, genetic interactions and ATG->AAG mutants suggest 692 

involvement in diverse cellular processes and pathways. It is important to note that some transient 693 

translatome phenotypes may be mediated by a protein product, by the process of translation itself, or 694 

both. Translation of both uORFs76 and dORFs77 can affect expression of nearby genes. Translation also 695 

plays a major role in the regulation of RNA metabolism through the nonsense-mediated decay pathway. 696 

78,79 Dissection of the molecular mechanisms mediating transient translatome phenotypes is an exciting 697 

area for future research.  698 

Our results indicate that the yeast noncanonical translatome is neither a major reservoir of conserved 699 

genes missed by annotation, nor mere “translational noise.” Instead, many translated nORFs are 700 

evolutionarily novel and likely affect the biology, fitness, and phenotype of the organism through 701 

species-specific molecular mechanisms. As transient ORFs differ greatly in their evolutionary and 702 

sequence properties from conserved ORFs, they should be understood as representing a distinct class of 703 

coding element from most canonical genes. Nevertheless, as with conserved genes, understanding the 704 

biology of transient ORFs is necessary for understanding the relationship between genotype and 705 

phenotypes. 706 
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Tables 722 

Table 1: Properties of well-conserved nORFs. Systematic name refers to either the systematic name 723 

annotated on SGD, or the name assigned here according to SGD conventions. BLASTP and TBLASTN e-724 

values are the minimum BLASTP or TBLASTN e-value observed in a search of the ORF against the yeast 725 

genomes assembled by Shen et al.41, excluding those in the Saccharomyces genus. BLAST coverage is the 726 

length of the segment that aligns to the best identified homolog (lowest e-value) in the BLAST search.  727 

RFC is reading frame conservation of the ORF among species in the Saccharomyces genus. Length is the 728 

length of the ORF in nucleotides. The pN/pS ratio is obtained from nucleotide variation in the ORF 729 

among the 1011 S. cerevisiae strains assembled by Peter et al.40; significant values below 1 indicate 730 

purifying selection. The dN/dS ratio was obtained from nucleotide variation in the ORF among 731 

Saccharomyces genus species; significant values below 1 indicate purifying selection. Translation 732 

percentile indicates the percentage of nORFs with a lower ribo-seq read count per codon than the 733 

indicated ORF.  734 

Systematic 
Name 

Coordinates BLASTP e-
value 

TBLASTN e-
value 

RFC BLAST 
coverage 
(nt) 

Length 
(nt) 

pN/pS (p-
value) 

dN/dS (p-value) Translation 
percentile 

YBL029W-Ba chrII:164192-
164368 

6.5 x 10-4 8.0 x 10-3 0.82 107 177 1.65 (.33) 0.88 (.68) 67 

YBL014W-Aa chrII:196737-
196889 

4.1 x 10-5 1.0 x 10-4 1 116 153 0.47 (.11) 0.14 (3.46 x 10-12) 86 

YBR085W-Ba chrII:417494-
417556 

1 1 0.86 0 63 0.72 (.48) 1.26 (.62) 58 

YBR268W-Aa chrII:741844-
742005 

1 1 0.99 0 162 0.61 (.15) 0.35 (3.18 x 10-7) 97 

YBR292W-Aa chrII:786745-
786903 

1.9 x 10-7 5.0 x 10-3 0.96 146 159 0.72 (.43) 0.57 (.0026) 83 

YER186W-Aa chrV:565603-
565800 

6.0 x 10-6 1 0.92 143 198 0.55 (.02) 1.0 (1) 97 

YGL262W-Aa chrVII:4663-4872 1 1.0 x 10-3 0.88 113 210 0.96 (.86) 1.0 (1) 86 

YGR238W-Aa chrVII:969015-
969089 

1 1 0.87 0 75 0.20 (.01) 1.18 (.74) 94 

YBL049C-Aa chrII:126330-
126461 

8.3 x 10-5 6.0 x 10-4 0.84 92 132 1.36 (.79) 1.5 (.22) 75 

YBL026C-Aa chrII:169634-
169870 

6.8 x 10-12 9.0 x 10-10 0.88 116 237 1.30 (.6) 0.87 (.42) 99.96 

YJR107C-Aa chrX:628457-
628693 

3.8 x 10-8 3.0 x 10-18 0.99 161 237 0.39 (.005) 1.42 (.13) 99.91 
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YLR349C-Aa chrXII:828276-
828338 

1 1 0.81 0 63 0.30 (.02) 0.73 (.24) 73 

YNR062C-Aa chrXIV:745640-
745792 

5.0 x 10-14 5.0 x 10-13 0.89 110 153 0.65 (.44) 1.49 (.15) 44 

YBR012C chrII:259147-
259566 

6.51 x 10-59 1x10-16 0.70 120 420 .62 (.1) .50 (.039) 92 

aWe assigned this unannotated ORF a systematic name based on SGD conventions.  735 

Table 2: Evolutionary properties of transient ORFs with phenotypes induced by inhibiting translation. 736 

The pN/pS ratio is obtained from nucleotide variation in the ORF among the 1011 S. cerevisiae strains 737 

assembled by Peter et al.40 TBLASTN was run for each ORF against genomes in the subphylum 738 

Saccharomycotina, excluding the genus Saccharomyces, with an e-value threshold of 10-4. 739 

ORF Name Reading frame 
conservation 

pN/pS (p-value) TBLASTN matches 

YBR196C-A .29 1.34 (0.65) 0 

YDL204W-Aa .20 1.25 (0.83) 0 

YGR016C-Aa .29 0.66 (0.36) 0 

YJL077C .21 0.74 (0.19) 0 

YNL040C-Aa .38 0.97 (1.00) 0 

YPR096C .20 1.39 (0.47) 0 
aWe assigned this unannotated ORF a systematic name based on SGD conventions.  740 

Supplementary figure legends 741 
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 742 

Supplementary Figure 1: Workflow to identify translated ORFs in the S. cerevisiae genome using 743 

published datasets. 744 
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 745 

Supplementary Figure 2: Translation patterns in candidate ORFs show high replicability between 746 

studies. A) Pairwise correlation between ribo-seq coverage of all candidate ORFs between studies 747 

included in the dataset. B) For each candidate ORF, the reads per base (considering only in-frame reads) 748 

are plotted for the two largest studies in the dataset.  749 

 750 

Supplementary Figure 3: Nucleotide variation determines ability to distinguish conserved ORFs. 751 

Reading frame conservation for each nonoverlapping ORF is plotted against the median count of 752 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2021.07.17.452746doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452746


` 

38 
 

differences between the S. cerevisiae ORF and the aligned homologous sequence in each Saccharomyces 753 

relative. Colors indicate SGD annotation categories. To the right of the vertical line, there are two 754 

distinct populations separable by reading frame conservation; the intermediate region contains few 755 

ORFs. For ORFs to the left of the vertical line, with few differences in the ORF between species, there is 756 

no clear separation between high-RFC and low-RFC ORFs. 757 

 758 

Supplementary Figure 4: Distribution of frame conservation among classes of ORFs. A) The distribution 759 

of frame conservation among candidate ORFs in the genome, including both translated and untranslated 760 

ORFs. B) For all ORFs in the high information set at least 100 nt in length, RFC was calculated considering 761 

only the final 100 nt of the ORF. RFC was then plotted for both cORFs and nORFs. This was done to test 762 

whether low RFC in nORFs could be caused by inferring start codons upstream of the actual start codons 763 

for conserved nORF, which would lead to false inference of a low RFC value. However, the pattern 764 

considering only the final 100 nt is similar to the pattern observed for the full ORFs in Figure 4B, with a 765 

clear bimodal distribution, indicating that false start codon inference is likely not driving the pattern.  C) 766 

The distribution of frame conservation is plotted for translated cORFs and nORFs that are antisense to 767 
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canonical genes. In contrast to frame conservation among nonoverlapping ORFs, the distribution does 768 

not appear bimodal.  769 

 770 

Supplementary Figure 5: Identification of conserved genes in the noncanonical translatome using 771 

TBLASTN. A) Process for identification of conserved nORFs evolving under purifying selection. To be 772 

identified as conserved, an nORF could not overlap any annotated feature on the S. cerevisiae genome 773 

or have any homology to an S. cerevisiae cORF at a 10-4 BLASTP e-value threshold (as this makes BLAST 774 

results ambiguous) and have at least two identified homologs in a TBLASTN search at a 10-4 e-value 775 

threshold. Then, an additional indicator of selection was required (RFC > .8, or p-value < .05 in a test of 776 

neutrality using dN/dS or pN/pS). B) Among translated S. cerevisiae ORFs with a single TBLASTN hit (at a 777 

10-4 e-value threshold) among budding yeasts outside the Saccharomyces genus, the distribution of 778 

sequence identities with that match is plotted. The existence of only a single match together with the 779 

prevalence of high sequence identities (>80%) suggests that the matches may be the result of genomic 780 

contamination rather than genuine homology, so at least two matches are required to accept homology 781 

as valid. 782 

 783 

 784 
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 785 

Supplementary Figure 6: cORFs lacking high-confidence homologs are enriched in weak TBLASTN 786 

matches. The frequency of weak TBLASTN matches (10-4 < e-value < .05) among budding yeast genomes 787 

for cORFs that lack any strong matches, and controls consisting of the same sequences randomly 788 

scrambled. Error bars indicate standard errors estimated from bootstrapping.  789 
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 790 

Supplementary Figure 7: Microscopy of detected transient nORFs.  Microscopy images of unannotated 791 

transient nORFs taken at 40X. Left panel show the expression of the nORFs tagged with mNeonGreen, 792 

middle panels the dyes CMAC Blue and MitoTracker Red for mitochondria and vacuoles identification, 793 

respectively, and the right panel the merge all the above channels with DIC. Two representative images 794 
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are shown per strain; expression of orf55981 was not uniformly detected, with some cells showing 795 

expression and some not.   796 

Supplementary tables 797 

Supplementary Table 1: Ribosome profiling experiments used for translation inference. 798 

Supplementary Table 2: Ribosome profiling studies used for translation inference. 799 

Supplementary Table 3: The yeast translatome. 800 

Supplementary Table 4: Selection analysis of ORF groups in S. cerevisiae strains. 801 

Supplementary Table 5: Phenotypes of canonical evolutionarily transient ORFs reported in literature. 802 

Supplementary Table 6: Results of deletion mutant screen on transient nORFs using a gene replacement 803 

strategy. 804 

Supplementary Table 7: Gene ontology analysis of genetic interactors of annotated transient ORFs. 805 

Supplementary Table 8: Information on ORFs tested in translation inhibition experiment. 806 

Supplementary Table 9: Strains used in this study. 807 
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STAR Methods 809 

Key resources table 810 

Reagent or 
Resource 

Source Identifier 

Deposited Data 

Deletion screen 
colony growth 
images 

This paper https://figshare.com/articles/dataset/A_vast_evolutionarily_tra
nsient_translatome_contributes_to_phenotype_and_fitness_-
_Deletion_screen_data/21741434 

C-SWAT collection Meurer et 
al.60 

Supplementary Table 

YeastRGB 
collection 

Dubreuil et 
al.61 

Yeastrgb.org 

CYCLoPs collection Ko et al.59 https://thecellvision.org/cyclops/ 

Saccharomyces 
cerevisiae S288C 
reference genome 

Saccharomy
ces genome 
database 

S288C reference sequence R64.2.1 

S. paradoxus 
genome 

Liti et al. 
200980 

http://www.saccharomycessensustricto.org/ 

S. arboricolus 
genome 

Liti et al. 
201381 

GCF_000292725.1 

S. jurei genome Naseeb et 
al. 201882 

GCA_900290405.1 

S. mikatae, S. 
bayanus var. 
uvarum, S. bayanus 
var. bayanus, and 
S. kudriavzevii 
genome 

Scannell et 
al. 201151 

http://www.saccharomycessensustricto.org/ 

TIF-seq data Pelechano 
et al. 201447 

GSE39128 

S. cerevisiae strain 
genomes 

Peter et al. 
201840 

http://1002genomes.u-strasbg.fr/files/ 

Budding yeast 
genomes 

Shen et al. 
201841 

https://y1000plus.wei.wisc.edu/data 

Reagents 

Yeast Extract BD Difco DF0127179 
Peptone BD Difco DF0118170 
G-418 RPI G64000-1.0 
D(+) Glucose Thermo 

Fisher 
AAA168280E 

Hygromycin B RPI H75020-1.0 
CellTracker Blue 
CMAC Dye 

Invitrogen C2110 

MitoTracker Red 
CMXRos 

Invitrogen M7512 
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Tunicamycin Sigma SML1287-1ML 
Fluconazole Sigma PHR1160-1G 
Sodium Chloride  Spectrum S1240-1KG 
Hydroxyurea Thermo 

Scientific 
A10831.14 

Hydrogen Peroxide Fisher 
Scientific 

H323-500 

DMSO Amresco 0231-500ML 
Poly(ethylene-
glycol) 3350 

Sigma P4338-500G 

ssDNA Life 
Technologie
s 

15632011 

Lithium Acetate 
dihydrate  

Sigma L4158-100G 

Experimental Models: Organisms, Strains 

Saccharomyces 
cerevisiae: BY4741  

Dharmacon YSC1048 

Saccharomyces 
cerevisiae: BY4741, 
deletion collection 

Dharmacon  YSC1053 

Saccharomyces 
cerevisiae: BY4741, 
ORF::KanMx (mini 
collection with the 
49 nORFs and 3 
cORFs deleted) 

This study 
 

Saccharomyces 
cerevisiae: BY4741, 
ORF-mNG:HYG 
(mini collection 
with the selected 
ORFs tagged with 
mNeonGreen) 

This study 
 

BY4741, YDL204W-
A(wt):HYG 

This study 
 

BY4741, YDL204W-
A(ATG->AAG):HYG 

This study 
 

BY4741, YBR196C-
A(wt):HYG 

This study 
 

BY4741, YBR196C-
A(ATG->AAG):HYG 

This study 
 

BY4741, YDR073C-
A(wt):HYG 

This study 
 

BY4741, YDR073C-
A(ATG->AAG):HYG 

This study 
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BY4741, YGR016C-
A(wt):HYG 

This study 
 

BY4741, YGR016C-
A(ATG->AAG):HYG 

This study 
 

BY4741, 
YJL077C(wt):HYG 

This study 
 

BY4741, 
YJL077C(ATG-
>AAG):HYG 

This study 
 

BY4741, YNL040C-
A(wt):HYG 

This study 
 

BY4741, YNL040C-
A(ATG->AAG):HYG 

This study 
 

BY4741, 
YPR096C(wt):HYG 

This study 
 

BY4741, 
YPR096C(ATG-
>AAG):HYG 

This study 
 

BY4741, YDL204W-
A(wt):HYG, pAG-
GPD-ccdB1-KanMx 

This study 
 

BY4741, YDL204W-
A(ATG->AAG):HYG, 
pAG-GPD-ccdB1-
KanMx 

This study 
 

BY4741, YDL204W-
A(wt):HYG, pAG-
GPD-YDL204W-A-
KanMx 

This study 
 

BY4741, YDL204W-
A(ATG->AAG):HYG, 
pAG-GPD-
YDL204W-A-KanMx 

This study 
 

Plasmids 
pAG-GPD-ccdB1-
KanMx 

 

This study  

pAG-GPD-
YDL204W-A-KanMx 

 

This study  

Software and algorithms 
Code for analyses 
conducted 

This paper https://zenodo.org/badge/latestdoi/446910374 

R R R version 4.1.2 
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BLAST National 
Library of 
Medicine 

BLAST 2.9.0+ 

Ontologizer 2.0 Bauer et al. 
200883 

http://ontologizer.de/ 

water EMBOSS https://www.ebi.ac.uk/Tools/psa/emboss_water/ 

MUSCLE 3.8.31 Edgar 
200484 

https://www.drive5.com/muscle/ 

 811 

Resources availability 812 

Lead contact 813 

Further information and requests for resources and reagents should be directed to and will be fulfilled 814 

by the lead contact, Anne-Ruxandra Carvunis (anc201@pitt.edu). 815 

Materials availability 816 

All materials will be made available on request. 817 

Data and code availability 818 

• All original code has been deposited on GitHub and is publicly available as of the date of 819 

publication. DOIs are listed in the key resources table. 820 

• Plate images for colony growth assays are available at Figshare and are publicly available as of 821 

the data of publication. DOIs are listed in the key resources table. 822 

• Any additional information required to reanalyze the data reported in this paper is available 823 

from the lead contact upon request. 824 

Experimental Model and Subject Details 825 

Yeast strains 826 

All strains used in this study are derived from BY4741 (Dharmacon, YSC1048). The parental strain and all 827 

derivatives produced in this study are listed in Supplementary Table 9. The lithium acetate method85 was 828 

used to create new strains and selection was performed on appropriate selection plates. For genomic 829 

integration, the inserts were PCR amplified from plasmids or GBlocks.   830 

Method Details 831 

Defining candidate ORFs 832 

To identify a set of translated ORFs, a set of candidate ORFs was constructed for which translation status 833 

could be inferred using ribo-seq data. ORFs were identified on the R64.2.1 Saccharomyces cerevisiae 834 

genome assembly downloaded from SGD.43 The initial set of candidates consisted of all possible single-835 
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exon reading frames starting with an ATG, ending with a canonical stop codon, and having at least one 836 

additional codon between the start and stop. Among all ORFs that shared a stop codon, all but the 837 

longest were discarded. An ORF was considered canonical if it shared a stop codon with an ORF 838 

annotated as “verified”, “uncharacterized”, or “transposable element gene” on SGD. All other ORFs that 839 

overlapped a canonical ORF on the same strand were removed (including pairs of overlapping canonical 840 

genes) while ORFs that overlapped cORFs on the opposite strand were classified as antisense ORFs.  841 

Yeast ribo-seq dataset collection and read mapping 842 

A list of S. cerevisiae ribosome profiling (ribo-seq) studies was identified by conducting a broad literature 843 

search. For each study, all ribo-seq experiments were added to the dataset except those conducted on 844 

mutants designed to alter wildtype translation patterns. The full list of experiments and studies included 845 

is given in Supplementary Tables 1 and 2, respectively. The fastq files associated with each experiment 846 

were downloaded from Sequence Read Archive86 or the European Nucleotide Archive.87 If adaptors were 847 

present in the fastq file, they were trimmed. Reads were filtered to exclude reads in which any base had 848 

a Phred score below 20. For each remaining read, the number of perfect matches in the S. cerevisiae 849 

genome were identified, and only unique perfect matches were kept.  850 

In initial mapping, reads were assigned to the genomic position aligning with the first base of the read. It 851 

was necessary to remap the reads such that the position assigned to the read instead corresponded to 852 

the first amino acid in the P-site of the translating ribosome, as in previous ribo-seq analyses37, so that 853 

the triplet periodic signal indicative of active translation overlaps precisely the bounds of translated 854 

ORFs. This was done by shifting all reads by the same number of positions, with the number determined 855 

separately for each read length and each experiment. To determine this number, a metagene profile 856 

was constructed: the number of reads in each of the -20 to +20 positions relative to the start codon was 857 

counted, accumulated over all annotated genes on Saccharomyces Genome Database (SGD)43. As there 858 

should be many more reads on the start codon of annotated genes than the sequence immediately 859 

upstream of these genes, the first attempt was to remap the first position with read count above a 860 

threshold to the first amino acid on the start codons, which then requires all other reads to shift by the 861 

same amount. The threshold selected was 5% of the total reads within 20 bases of the annotated start 862 

codons. The attempted shift was accepted if the expected triplet periodic pattern was obtained; i.e., 863 

there were more remapped reads on the first base of the codons of annotated genes than on the 864 

second or third base. Otherwise, a second shift was attempted from the next position exceeding the 865 

read count threshold, and so on until both criteria were met.  866 
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For quality control, presence of triplet periodicity was then tested for each read length in each 867 

experiment. The number of reads mapping (after remapping) to the first, second, and third position of 868 

each codon was counted among annotated genes, requiring at least twice as many reads in the first 869 

position than each of the second and third. If a read length failed this test for a given experiment it was 870 

excluded from further analysis, and if all read lengths for an experiment failed the experiment itself was 871 

excluded. All read lengths from 25 to 35 nucleotides were tested. 872 

Translation calling 873 

The iRibo program can be applied to any set of ribo-seq experiments to identify a set of ORFs with 874 

evidence of translation among those experiments. To construct a reference translatome, translation was 875 

inferred using ribo-seq data from the full set of experiments we collected that passed quality control 876 

(Supplementary Table 3). Separately, iRibo was also run on specific subsets of the full collection, 877 

including: experiments with or without the drug cycloheximide, experiments only on cells grown in YPD; 878 

only on cells grown on SD; and only on cells grown in YPD without cycloheximide (Supplementary Table 879 

3). iRibo was also run separately for each individual study, generating lists of translated ORFs within 880 

each study.  881 

Translation was assessed as follows: for each codon in each candidate ORF, the position within the 882 

codon with the most reads was noted, if any. The number of times each codon position had the highest 883 

read count across the ORF was then counted. The binomial test was then used to calculate a p-value for 884 

the null hypothesis that all positions were equally likely, against the alternative that the first position 885 

was favored. This p-value is an indicator of the strength of evidence for triplet periodicity favoring the 886 

first codon position. 887 

To estimate the false discovery rate (FDR), a set of ORFs corresponding to the null hypothesis was 888 

constructed. For each ORF, the ribo-seq reads were scrambled randomly position by position (not read 889 

by read); e.g., if 10 reads mapped to the first base on the actual ORF, a random position in the 890 

scrambled ORF was assigned 10 reads, and so on. In this way the read distribution across positions was 891 

maintained but the spatial structure was eliminated. The same binomial test as used for the actual reads 892 

was then used on all scrambled-read ORFs. For every p-value threshold, the FDR can then be calculated 893 

as the number of scrambled ORFs with p-value below the threshold divided by the number of actual 894 

ORFs with p-values below the threshold. For each list of translated ORFs, the p-value threshold was set 895 
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to give a 5% FDR among noncanonical ORFs; all ORFs with p-values below this threshold were then 896 

included in the translated set, whether canonical or noncanonical. 897 

Estimating translation rates across different genomic contexts 898 

All nORFs were partitioned into genomic contexts, with nonoverlapping nORFs classified by the relation 899 

between the nORF and any cORF located on the same transcript and antisense nORFs classified by 900 

partial or complete overlap of the opposite strand gene. The transcripts reported in Pelechano et al. 901 

201447 based on TIF-seq data were used for this analysis. An nORF was considered antisense if it 902 

overlapped an ORF annotated as “verified”, “uncharacterized”, “transposable element” or “blocked” on 903 

SGD on the opposite strand and nonoverlapping otherwise (ORFs overlapping annotated genes on the 904 

same strand were excluded from analysis, as described above). A nonoverlapping nORF was considered 905 

to share a transcript with a cORF or annotated non-coding RNA if any transcript fully contained both the 906 

nORF and the cORF or annotated RNA sequence; the ORF was then further classified as being either a 907 

uORF or dORF based on whether it was upstream or downstream of the cORF or RNA. If an nORF shared 908 

a transcript with both its upstream and downstream neighboring cORFs, it was classified according to 909 

the cORF that was closer.  910 

Identifying homologous sequences of the S. cerevisiae ORF in other Saccharomyces genus species 911 

Genomes were obtained from seven relatives of S. cerevisiae within the Saccharomyces genus: S. 912 

paradoxus from Liti et al. 200980, S. arboricolus from Liti et al. 201381, S. jurei from Naseeb et al. 201882,  913 

and S. mikatae, S. bayanus var. uvarum, S. bayanus var. bayanus, and S. kudriavzevii from Scannell et al. 914 

2011.51 Alignments were constructed between each S. cerevisiae ORF and its homologs in each 915 

Saccharomyces relative using synteny information. To identify anchor genes for syntenic blocks, BLASTP 916 

was run for each annotated ORF in S. cerevisiae against each ORF in the comparison species. Identified 917 

homolog pairs with e-value < 10-7 were selected as potential anchors. For each ORF in the S. cerevisiae 918 

genome, the upstream anchor G0 and downstream anchor G1 were selected that minimized the sum of 919 

the distance between the anchors in S. cerevisiae and the distance between the anchors in the 920 

comparison species; this sum was required to be less than 60 kb. The sequence between and including 921 

G0 and G1 were then extracted from both the S. cerevisiae genome and the comparison species and a 922 

pairwise alignment of the syntenic region was generated using MUSCLE 3.8.31.84 923 

To confirm that the ORF was matched to genuinely homologous DNA, the alignment of the S. cerevisiae 924 

ORF along with its 50 bp flanking regions was extracted from the full syntenic alignment. The extracted 925 
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region was then realigned using the Smith-Waterman algorithm88 with a match bonus of 5, a mismatch 926 

penalty of 4, and a gap penalty of 4. To test homology, 1000 alignments were constructed using the 927 

same score system in which the sequence of the comparison species was shuffled at random, reflecting 928 

a null hypothesis that the region was not homologous. The proportion of times the alignment of the real 929 

sequence scored better than the shuffled ones is a p-value indicating the strength of the null hypothesis 930 

against the alternative that the region is homologous. Homology was accepted as confirmed if the p-931 

value was less than 1%, and alignments were excluded from analysis if homology was not confirmed.  932 

If a syntenic alignment could not be constructed for a particular S. cerevisiae ORF and comparison 933 

species (because homology failed or there were no appropriate anchors), BLAST was attempted as an 934 

alternative method of finding the homologous DNA sequence. For these ORF sequences, BLASTn was 935 

run against the genome of the comparison species. For each reciprocal best matching pair with e-value < 936 

10-4, the matched sequences in both species were extracted, together with a 1000 bp flanking region in 937 

both ends, and aligned using MUSCLE.84 DNA homology was then tested using Smith-Waterman 938 

alignment as described above.  939 

Division of ORFs into high information and low information sets 940 

Evolutionary analysis of ORFs was done separately for those ORFs for which there existed substantial 941 

information to test selection (“high information ORFs”) and those for which less information was 942 

available (“low information ORFs”). To be placed in the high information set, the ORF had to meet a 943 

homology criterion and a diversity criterion. The homology criterion required that DNA homology was 944 

confirmed in either a synteny or BLAST-based pairwise alignment with at least four other species in the 945 

Saccharomyces genus. For the diversity criterion, the number of single nucleotide differences (excluding 946 

gaps) was counted between the S. cerevisiae ORF and all its aligned sequence with confirmed homology 947 

among Saccharomyces genomes. The diversity criterion was satisfied if the median count of differences 948 

exceeded 20. 949 

Reading frame conservation 950 

Reading frame conservation is a measure of conservation of codon structure developed by Kellis et al. 951 

200320 and used here with some modifications. Calculation of reading frame conservation was done on a 952 

pairwise alignment of a genomic region containing the S. cerevisiae ORF (either a syntenic block 953 

between conserved genes or the 1000 bp flanking region around a BLAST hit). All single-exon ORFs (ATG 954 

to stop codon) in the comparison species were identified across this region. For each ORF in the 955 
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comparison species, the reading frame conservation was calculated by summing up all points in the 956 

alignment where the pair of aligned bases are in the same position within the codon (i.e., both are in 957 

either the first, second, or third position) and dividing by the length of the S. cerevisiae ORF in 958 

nucleotides (including start and stop codons). Positions that align to gaps or are outside the range of the 959 

S. cerevisiae ORF are always considered to be not in the same codon position and do not add to the 960 

numerator. The ORF in the comparison species with the highest reading frame conservation is 961 

considered the best match, and the reading frame conservation of the S. cerevisiae ORF in relation to 962 

each other Saccharomyces species is defined as its reading frame conservation with its best match. In 963 

addition to the pairwise reading frame conservation of each S. cerevisiae ORF in relation to its homologs 964 

in all other species, an index of reading frame conservation (RFC) was defined equal to the average 965 

reading frame conservation of the S. cerevisiae ORF against all species in the Saccharomyces genus for 966 

which homologous DNA could be identified. 967 

Detecting distant homology among S. cerevisiae ORFs 968 

The genomes of 332 budding yeasts were taken from Shen et al. 2018.41 We applied TBLASTN and 969 

BLASTP for each S. cerevisiae translated ORF against each genome in this dataset (excluding the 970 

Saccharomyces genus). Default settings were used except for setting an e-value threshold of 0.1; results 971 

were then filtered by a stricter e-value threshold as described in each analysis. The BLASTP analysis was 972 

run against the list of protein coding genes used in Shen et al. 201841 while the TBLASTN analysis was 973 

run against each entire genome. In the TBLASTN analysis, scrambled sequences of each S. cerevisiae ORF 974 

were also included as queries to serve as a negative control.  975 

Tests of selection using the dN/dS and pN/pS ratios 976 

Variant call file data for 1011 S. cerevisiae isolates was taken from Peter et al. 2018.40 For each ORF, 977 

nucleotide diversity was estimated from the full set of isolates. Nucleotide diversity was estimated as 978 

the mean number of differences per site in the ORF between any pair of isolates. To calculate dN/dS, the 979 

consensus sequence among all isolates was determined. At each position in the consensus, the three 980 

possible nucleotide variations were recorded as possible polymorphisms and distinguished by 981 

polymorphism type (12 possible combinations of consensus and variant nucleotide) and whether they 982 

would result in a synonymous or nonsynonymous difference from the consensus. If at least one isolate 983 

had the polymorphism, the polymorphism was also recorded as observed. All possible and observed 984 

polymorphisms were counted among all considered ORFs.   985 
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The pN/pS ratio was calculated in a similar manner to Ruiz-Orera et al. 201828 and could be applied to 986 

either a single ORF or a group of ORFs. For each ORF under consideration, the consensus sequence 987 

among all isolates was determined. At each position in the consensus, the three possible nucleotide 988 

variations were recorded as possible polymorphisms and distinguished by polymorphism type (12 989 

possible combinations of consensus and variant nucleotide) and whether they would result in a 990 

synonymous or nonsynonymous difference from the consensus. If at least one isolate had the 991 

polymorphism, the polymorphism was also recorded as observed. All possible and observed 992 

polymorphisms were counted among all considered ORFs.   993 

Consider a variant X→ Y where X is the consensus at a site and Y is a possible variant. The probability of 994 

observing variant Y at a position with consensus X, px→Y was estimated as the observed count of X→Y 995 

variant sites divided by the possible count of X→Y variant sites. Under neutrality, the expected count of 996 

either synonymous or nonsynonymous X→Y variant sites is then the product of px→Y and the number of 997 

possible synonymous or nonsynonymous X→Y variant sites. In this manner the expected and observed 998 

counts of synonymous and nonsynonymous variants were calculated. The pN/pS ratio is then estimated 999 

as: 1000 

𝜔 =
𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑏𝑠/𝑛𝑜𝑛𝑠𝑦𝑛𝑒𝑥𝑝

𝑠𝑦𝑛𝑜𝑏𝑠/𝑠𝑦𝑛𝑒𝑥𝑝
 1001 

Under neutrality, then, the expected count of X→Y nonsynonymous variant sites is the number of 1002 

possible such variant sites times the expected probability of this variant. In this manner the expected 1003 

and observed counts of all synonymous variant types were calculated. To test for deviation from 1004 

neutrality, we used a chi-squared test with one degree of freedom to compare observed vs. expected 1005 

counts of synonymous and nonsynonymous variants. Standard errors for the pN/pS ratio in group 1006 

analyses were estimated by bootstrapping: the ORFs in the group were resampled with replacement 1007 

1000 times and the pN/pS ratio was calculated each time. The standard error was then estimated as the 1008 

sample standard deviation among the 1000 pN/pS ratios. 1009 

The dN/dS ratio was calculated based on differences in the pairwise ORF alignments S. cerevisiae and its 1010 

closest relative S. paradoxus. Each S. cerevisiae ORF was associated with an S. paradoxus ORF for which 1011 

the pair had the highest reading frame conservation (or none if homology with S. paradoxus was not 1012 

confirmed or the highest reading frame conservation was 0). Counts of differences were made only for 1013 

codons that shared the same frame between these ORFs and with at most one nucleotide difference 1014 

between the codons. For every eligible position in the S. cerevisiae ORF, each possible S. paradoxus 1015 
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difference was counted and distinguished by whether the difference was synonymous or 1016 

nonsynonymous and by type (four S. cerevisiae nucleotides, each with three possible S. paradoxus 1017 

differences). These observed and possible differences were then used to estimate the dN/dS ratio in the 1018 

same way as described above for the pN/pS ratio.  1019 

Among nORFs with high RFC, the strong conservation in Saccharomyces permitted calculation of dN/dS 1020 

over the entire Saccharomyces tree, and so this was done as an additional test of selection (as reported 1021 

in Table 1). For this analysis, ancestral reconstruction of the Saccharomyces phylogeny was conducted 1022 

using PRANK89 with parameters -showanc -showevents -once -prunetree -keep. Ancestral reconstruction 1023 

included all species in which DNA homology was confirmed. Codons were only used for counting 1024 

substitutions if they shared frame conservation among all species. Observed and possible substitutions 1025 

were counted across each branch and distinguished by substitution type and whether the substitutions 1026 

were synonymous or nonsynonymous. Then, dN/dS was estimated in the same way as described for 1027 

pN/pS above.  1028 

Classification of ORFs into transient and conserved sets 1029 

All high-information nonoverlapping translated ORFs with RFC > 0.8 were classified as conserved (Figure 1030 

4A). An nORF was also classified as conserved if it overlapped no annotated feature on SGD, had 1031 

TBLASTN matches with e-value < 10-4 with at least two species outside the Saccharomyces genus and 1032 

showed at least one additional signature of purifying selection (RFC > 0.8 or a p-value < 0.05 in a test of 1033 

neutrality using dN/dS or pN/pS) (Supplementary Figure 5A). 1034 

Nonoverlapping ORFs were excluded from classification in the transient set if they showed homology to 1035 

an ORF classified as conserved in S. cerevisiae (e-value < 10-4 using BLASTP) or to any sequence among 1036 

budding yeasts outside Saccharomyces41 (e-value < 10-4 using TBLASTN). Among remaining translated 1037 

ORFs, all high-information ORFs with RFC < 0.6 were classified as transient. Low information ORFs were 1038 

divided into groups and classified as transient if no group they belonged to showed evidence of 1039 

selection in dN/dS analysis, pN/pS analysis, or weak homology matching analysis. Two low-information 1040 

groups were cORFs and antisense nORFs. Low information nonoverlapping nORFs were each assigned to 1041 

three groups corresponding to deciles of translation rate, coding score and ORF length. Analyses of 1042 

dN/dS and pN/pS are described above. For weak homology detection, the number of ORFs with at least 1043 

two weak TBLASTN matches (e-value < 0.05) to budding yeast genomes collected by Shen et al. 201841 1044 

(excluding Saccharomyces species) was counted for both actual and scrambled ORF sequences. Selection 1045 
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was inferred if actual matches significantly (p < 0.05) exceeded scrambled matches using Fisher’s exact 1046 

test. Only ORFs that did not overlap any annotated feature on SGD were included in weak homology 1047 

detection analysis. 1048 

Coding score calculation 1049 

The coding score, described by Ruiz-Orera et al. 201490, is a measure of how close the hexamer (i.e., the 1050 

nucleotide sequence of a pair of adjacent codons) frequency of an ORF is to the hexamer of coding vs. 1051 

noncoding sequences. Higher scores indicate a more gene-like hexamer distribution. Coding hexamer 1052 

frequencies were calculated among all ORFs annotated as “verified” or “uncharacterized” by 1053 

Saccharomyces Genome Database.43 Noncoding hexamer frequencies were calculated for all intergenic 1054 

sequences (sequences in between verified or uncharacterized ORFs) in the S. cerevisiae genome. As 1055 

intergenic sequence has no codon structure, hexamer frequencies for intergenic sequence were counted 1056 

as if read in each possible coding frame. The score was then calculated as described in Ruiz-Orera et al. 1057 

2014.90 1058 

Identification to transient ORFs with detectable translation products in published microscopy studies 1059 

Published results were examined from fluorescent tagging experiments where the expression of ORFs 1060 

was driven by native promoters and terminators. A list of ORFs detected in 15 GFP-tagged screens on 1061 

wildtype strains in either normal conditions or with chemical treatment (hydroxyurea or rapamycin) 1062 

were retrieved from the CYCLoPs database.58,59 Lists of ORFs detected in the C-SWAT tagging library 1063 

were taken from Meurer et al. 201860 and from YeastRGB61. ORFs with fluorescent intensity below the 1064 

reported detection threshold in each screen were filtered out. Transient ORFs that showed detectable 1065 

translation products in at least one screen were considered as detected. 1066 

Literature analysis of transient translatome cORFs 1067 

For each transient translatome cORF, we examined all publications listed on SGD as “primary” or 1068 

“additional” literature for the ORF. If the ORF had a phenotype in any listed publication, we noted the 1069 

evidence for the phenotype (Supplementary Table 5). 1070 

Genetic interaction analysis 1071 

Single mutant fitness and genetic interaction data were downloaded from TheCellMap.org.91 In this 1072 

dataset, mutants of nonessential genes are full deletions and mutants of essential genes are 1073 

temperature-sensitive alleles. Transient ORFs were all nonessential. Different temperature-sensitive 1074 
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alleles for the same essential gene were treated separately. We removed all genes or transient ORFs 1075 

with a genomic overlap to another genetic element from our analyses as it is not possible to assign the 1076 

observed phenotypes to either of the overlapping pairs.  1077 

We counted the number of transient ORF and nonessential genes that showed at least one genetic 1078 

interaction with Ɛ<-.2 and p-value < 0.05 (a negative genetic interaction) or Ɛ<-.35 with a p-value<0.05 (a 1079 

synthetic lethal interaction). We then divided this number by the total number of transient ORFs or 1080 

nonessential genes in the Costanzo et al. 201669 genetic interaction dataset to calculate the percentage 1081 

showing at least one genetic interaction. We used Fisher’s exact test to assess the significance of 1082 

differences between percentages of nonessential genes and transient ORFs.  1083 

Gene ontology analysis of the interactors of each ORF was conducted with Ontologizer83, using 1084 

Benjamini-Hochberg multiple testing correction and the term-for-term calculation method. The gene 1085 

association file was downloaded from SGD. Gene ontology evidence codes relating to genetic 1086 

interactions (IGI and HGI) were not used. 1087 

Creation of yeast strains 1088 

Deletion mutant strains for 49 transient nORFs and 3 transient cORFs were created by using homologous 1089 

recombination to replace the ORFs with a KanMX cassette. Transformations were done using the 1090 

LiAc/PEG protocol85 in the background BY4741 strain, and selected in media containing G-418. After an 1091 

initial screen of these strains, a subset of the deletion strains that showed strong deleterious effects 1092 

were transformed a second time, also using the LiAc/PEG protocol85, to replace the KanMx cassette with 1093 

either an intact copy of the original ORF, or a mutant copy of the ORF with the start codon ATG and (in 1094 

some cases) additional in-frame ATG codons mutated to AAG to prevent translation. This was 1095 

accomplished by using homologous recombination to replace the KanMx cassette with a construct 1096 

containing the intact or mutant ORF followed by a hygromycin resistance cassette. These constructs 1097 

were synthesized by IDT (Integrated DNA Technologies). The resulting transformants were selected in 1098 

agar plates containing hygromycin. All positive clones were sequenced to confirm presence of either the 1099 

restored wildtype ORF or the ORF with a mutated start codon.   1100 

Strains containing an mNeonGreen tag for microscopy purposes were also made by homologous 1101 

recombination using the LiAc/PEG protocol85 in the BY4741 background. The mNeonGreen and 1102 

hygromycin cassette sequences were amplified from a plasmid using primers containing homology to 1103 

the 3’ of each ORF. The primers were designed to remove the STOP codon of each ORF and place the 1104 
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mNeonGreen in frame with the ORF, to be expressed under its native promoter. Positive clones were 1105 

selected on agar plates containing hygromycin.   1106 

All strains were kept in glycerol stocks at −80 °C in 96 and 384-well format until used for screening. 1107 

Strain genotypes are listed in Supplementary Table 9.  1108 

Screening strategy for fitness estimation 1109 

Both rounds of deletion screening were conducted at 1536 colony density, with 1 in 4 colonies on the 1110 

plate being reference strains used to correct for spatial biases as described in Parikh et al. 2021.92 In the 1111 

initial deletion screen, each mutant strain was tested using 12 replicates; 72 replicates were tested per 1112 

strain in the start codon mutant screen. Conditions tested were YPDA and YPDA+DMSO as unstressed 1113 

conditions and five stress conditions: YPDA supplemented with 1M NaCl, 100mM Hydroxyurea, 0.6µM 1114 

Tunicamycin, 25µg/ml Fluconazole, or 30mM Hydrogen peroxide (H2O2). Agar plates were incubated and 1115 

imaged periodically until the colonies reached saturation. The plate handler Singer ROTOR (Singer 1116 

Instrument Co. Ltd) was used to prepare all plates starting from glycerol stocks. Serial imaging of the 1117 

plates was conducted using the spImager Automated Imaging System (S & P Robotics Inc., Ontario, 1118 

Canada). The images were analyzed in bulk using a custom script made using functions from the 1119 

MATLAB Colony Analyzer Toolkit92 to provide colony size estimations 1120 

(https://github.com/sauriiiin/lid_personal/blob/master/justanalyze.m). The output files containing 1121 

colony size information along with the images is available at https://bit.ly/3xtzHJO. The LI Detector 1122 

analytical pipeline92 was used to correct for spatial biases in colony size and obtain colony fitness 1123 

estimates. Strain fitness was estimated as the median of bias-corrected colony size among replicates of 1124 

the strain at 40 hours in the initial screen and 90 hours in the start codon mutant screen. In the LI 1125 

Detector pipeline92, sets of reference colonies are treated as if they were replicates of a mutant strain, 1126 

with their median fitness calculated in order to construct an empirical null distribution of median fitness 1127 

values to compare with estimated strain fitness. Strains were called as beneficial or deleterious using a 1128 

5% false discovery rate threshold based on this empirical null distribution. For any selected fitness 1129 

threshold used to infer deleterious strains, the false discovery rate can be calculated as the proportion 1130 

of null distribution fitness values below that threshold divided by the proportion of mutant strain fitness 1131 

values below the threshold. Thus, fitness thresholds were selected such that a 5% FDR was obtained and 1132 

strains with fitness below that threshold were inferred to be deleterious. In the same manner, a list of 1133 

beneficial strains at 5% FDR was also selected.  1134 
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Liquid growth assay 1135 

For liquid growth assays, cells were first grown in liquid YPDA media overnight at 30°C in a 96-density 1136 

microplate. These were then used to inoculate a new 96-density microplate with 150l YPDA+ stress 1137 

conditions (1M NaCl, 100mM Hydroxyurea)) using the Singer ROTOR (Singer Instrument Co. Ltd). This 1138 

microplate was incubated at 30oC with constant double orbital shaking for a period of 72h on microplate 1139 

reader Biotek Synergy H1 (Aligent Technology Inc.). Optical density readings at 600nm (OD600) were 1140 

taken every 15 minutes.  1141 

Microscopy  1142 

The strains containing the ORFs tagged with mNeonGreen were imaged on a Nikon TiE2 inverted A1R 1143 

confocal microscope. A first screening was done at high density in 96-well plates with a 40x water 1144 

objective, to assess the success of the transformations. Plates were incubated with CellTracker Blue 1145 

CMAC Dye (Invitrogen) and MitoTracker Red CMXRos Dye (Invitrogen) at least 10 min prior to imaging.  1146 

Plates were then imaged in 4 channels (405, 488, 561, and DIC), and 3 fields of view were taken for each 1147 

strain that contained many cells. Strains that demonstrated visibly higher signal in the green channel 1148 

(488nm) compared to a non-transformed background strain were selected to examine in single dishes 1149 

under a 100X oil objective to more accurately evaluate sub-cellular localization. All strains were imaged 1150 

in triplicate at high density and triplicate in dishes (once without CMAC and MitoTracker and two times 1151 

with the dyes). 1152 

Quantification and statistical analysis 1153 

Statistical analyses were performed in R version 4.1.2. Details for each statistical test and analysis can be 1154 

found in the results section and figure legends. 1155 

  1156 

  1157 
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