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Abstract

The high-level organization of the cell is embedded in indirect relationships that connect dis-

tinct cellular processes. Existing computational approaches for detecting indirect relation-

ships between genes typically consist of propagating abstract information through network

representations of the cell. However, the selection of genes to serve as the source of propa-

gation is inherently biased by prior knowledge. Here, we sought to derive an unbiased view

of the high-level organization of the cell by identifying the genes that propagate and receive

information most effectively in the cell, and the indirect relationships between these genes.

To this aim, we adapted a perturbation-response scanning strategy initially developed for

identifying allosteric interactions within proteins. We deployed this strategy onto an elastic

network model of the yeast genetic interaction profile similarity network. This network

revealed a superior propensity for information propagation relative to simulated networks

with similar topology. Perturbation-response scanning identified the major distributors and

receivers of information in the network, named effector and sensor genes, respectively.

Effectors formed dense clusters centrally integrated into the network, whereas sensors

formed loosely connected antenna-shaped clusters and contained genes with previously

characterized involvement in signal transduction. We propose that indirect relationships

between effector and sensor clusters represent major paths of information flow between dis-

tinct cellular processes. Genetic similarity networks for fission yeast and human displayed

similarly strong propensities for information propagation and clusters of effector and sensor

genes, suggesting that the global architecture enabling indirect relationships is evolutionarily

conserved across species. Our results demonstrate that elastic network modeling of cellular

networks constitutes a promising strategy to probe the high-level organization and coopera-

tivity in the cell.
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Author summary

A central goal of systems biology is to understand how biomolecules cooperate through

direct and indirect relationships. However, indirect relationships have been notoriously

hard to quantify. In protein biophysics, there is a long tradition of quantifying indirect

allosteric relationships between amino acids using elastic network models (ENMs). Here,

we show that ENMs can be adapted to build global dynamic models of the cell and quan-

tify, unbiasedly for the first time, how much individual biomolecules indirectly influence

each other. We illustrate how this approach can be used to infer signaling pathways using

budding yeast as a proof of concept. We also show that the global dynamic architecture of

genetic networks may have evolved to maintain a high potential for indirect cooperative

relationships. In budding yeast, human and fission yeast, we identify specific clusters of

genes with key roles in distributing (effectors) or receiving (sensors) biological informa-

tion through indirect relationships. We propose that elastic network modeling of cellular

networks is a promising avenue for tackling current challenges in systems biology.

Introduction

Cellular networks are abstract representations of the relationships between genes or between

their encoded products. Network nodes represent genes or gene products while network edges

represent physical (e.g., protein interactions) or functional (e.g., epistatic genetic interactions)

relationships between nodes [1]. In-depth analysis of the local connectivity of nodes of interest

allows to identify biological modules [2] or disease-associated groups of genes [3] or to eluci-

date unknown gene functions [4,5]. Global analysis of the interplay between unconnected,

seemingly unrelated nodes (“indirect relationships”) can provide a broader understanding of

the overarching biological and physical mechanisms that govern cellular systems. For example,

the study of indirect relationships helps with predicting how constellations of diverse genetic

and environmental signals are sensed to modulate disease risk [6], or with defining how the

molecular relationship between distinct cellular processes mediate genotype-phenotype rela-

tionships [7]. In sum, it is important to study both direct and indirect relationships between

nodes in cellular networks to decipher the biological principles underlying the functional orga-

nization of the cell [8].

The study of indirect relationships in cellular networks poses a computational challenge

because each network node may be indirectly connected to any other network node through

multiple paths, resulting in a complex combinatorial landscape [9]. Network propagation (also

referred to as information transfer or geometric diffusion) methods [10–12] have been widely

used to identify meaningful indirect relationships between genes [13–15] or within biomolecu-

lar structures [16]. The basic principle of these methods is to model a diffusion process, often

as a Markovian process, starting from a source node, akin to the flow of a liquid or heat in a

solid matter, and to calculate the amount of diffusion from the source node to other nodes in

the network. This amount of diffusion across the network is used as a metric quantifying the

indirect relationship, with nodes receiving the most information being ranked as most likely

to be engaged in a meaningful indirect relationship with the source node. For some applica-

tions, this is equivalent to a random walk with restart process on the network nodes [15]. Net-

work propagation methods have been applied to a wide range of biological problems, from

identifying disease-related genes [17,18] to protein homology detection [19].

An important caveat for the use of network propagation methods in cellular networks is the

requirement for prior information to select source genes, such as disease genes. This
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introduces an inherent bias that hampers the discovery of novel indirect relationships that

may be critical for cellular function but do not involve genes that would be chosen as sources

based on prior knowledge. To obtain a comprehensive understanding of a network’s indirect

relationships, an unbiased approach is needed in which all nodes would be considered as pos-

sible sources and all possible indirect relationships would be investigated. With such an unbi-

ased method, one could possibly identify key propagation-mediating genes without relying on

prior knowledge and extract the strongest indirect relationships between them. Indeed, not all

genes would be expected to engage equally in indirect relationships. Some genes that are

involved in multiple cellular processes might be very effective at propagating signals through-

out the cell. Other genes might be involved in sensing and integrating signals from diverse

sources in the cell to coordinate cellular responses to environmental changes–a property that

cannot currently be predicted based on cellular network connectivity to our knowledge. In

sum, novel approaches are needed to illuminate the global architecture of indirect relation-

ships in the cell.

To achieve this goal, we leveraged a perturbation-response scanning (PRS) strategy initially

developed for the unbiased identification of allosteric interactions within biomolecular struc-

tures [20–22]. For PRS analysis, the structures (proteins, their complexes or assemblies, or

chromosomes) are represented by elastic network models (ENMs) [23] where each network

node represents a physical entity (e.g., a residue, domain, monomer, or gene locus in the chro-

matin) [24] and each network edge is modeled as a spring that represents a physical interaction

between the nodes. ENM representation allows for the application of forces perturbing every

node in the network, generating a perturbation effect that propagates throughout the network

and enables quantitative measurement of the cooperative motions/responses of all other nodes

(Fig 1A). These measurements derive directly from the Laplacian matrix deduced from the

network topology (Fig 1A). Therefore, PRS provides a unique mathematically exact analytical

solution for (i) the strength of cross-correlations between the fluctuations of each pair of net-

work nodes (indirect relationships) and (ii) the ability of each node to transmit perturbation

effects to other nodes (“effectiveness”) and to receive those effects transmitted by other nodes

(“sensitivity”), through indirect relationships [21].

We reasoned that PRS could be successfully extended from molecular structures to cellular

networks. Indeed, the connection between PRS and graph-theory-based analyses is well estab-

lished. For example, the central component of the PRS analysis—the covariance matrix

deduced from the ENMs—is directly proportional to the commute times predicted by Mar-

kovian propagation process to measure the efficiency of information transduction between

pairs of nodes in a network [16]. Furthermore, spring-based modeling has already proven to

be valuable for both visualization [25] and functional inference [26] in cellular networks.

Therefore, the PRS strategy has the potential to enable systematic and unbiased identification

of critical propagation-mediating nodes and to derive a global, unbiased view of indirect rela-

tionships in cellular networks.

Here, we adapted the PRS strategy to identify the key propagation-mediating genes and the

indirect relationships between these genes in the comprehensive genetic interaction profile

similarity network (GI PSN) generated for S. cerevisiae by Costanzo et al. [27]. In this network,

genes are linked when their respective deletions impart similar effects on cell growth in the

context of deletions of nearly all other genes in the genome one by one [28]. It is now well-

established that genes with direct interactions in the GI PSN tend to share similar molecular

functions, and edges in the GI PSN are commonly interpreted as indicating high “functional

similarity” [29]. In addition, modules of tightly connected genes in the GI PSN often corre-

spond to molecular machines or pathways [27], which are themselves integrated into increas-

ingly larger subnetworks representing the hierarchical organization of cellular processes
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Fig 1. Perturbation Response Scanning (PRS) applied to the yeast genetic interaction profile similarity network (GI PSN). A) The PRS

strategy illustrated on a toy network. The network is first transformed into a Laplacian matrix describing the network connectivity. The Laplacian

matrix shows the degree of each node on the diagonal (shades of blue, darker is the higher degree) and connectivity of each node on the non-

diagonal (red). Eigenvalue decomposition of the Laplacian yields the eigenvalues and eigenvectors used to calculate the covariance matrix. Each

row of the covariance matrix is then normalized by the diagonal element resulting in an asymmetric PRS matrix where each row corresponds to a

perturbed node, each column corresponds to a responding node and the colors show the magnitude of the response in arbitrary units (a.u., also

used for the remaining figures). Row and column averages of the PRS matrix represent the effectiveness (right ordinate) and sensitivity (lower
abscissa) of each node, respectively. B) PRS analysis of the GI PSN (left) yields the PRS matrix shown on the right. The nodes on the network (black
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[30,31]. Indirect relationships in the GI PSN, therefore, represent the functional relationships

between distinct cellular pathways and processes.

Results

PRS clusters genes based on their potential to receive and transmit

information

The GI PSN generated by Costanzo et al. [27] contains 5,183 nodes (genes) and 39,816 edges

(functional similarity, defined as pairwise correlations of genetic interaction profiles with

PCC� 0.2). We constructed an ENM representation of the GI PSN and applied the PRS strat-

egy to this network by perturbing each gene individually and measuring the responses of the

other genes. This resulted in a 5,183-by-5,183 PRS matrix (Fig 1B) representing the perturba-

tion-response relationship between all pairs of genes. Hierarchical clustering of the PRS matrix

rows and columns delineated groups of genes based on their information propagation profiles.

Notably, one cluster of perturbed genes and one cluster of responding genes were distinctly

separated from the rest of the genes in the dendrograms (Fig 1B, colored clusters on the den-

drograms). The genes in these two distinct clusters displayed higher effectiveness and sensitiv-

ity, respectively, than the rest of the genes in the network (Fig 1C, p<0.001, permutation test).

Next, we mapped the genes belonging to these distinct clusters on the network. The distinct

cluster of perturbed genes corresponded to highly connected, central regions of the network.

In contrast, the members of the distinct cluster of responding genes were distributed through-

out the network, with a tendency to be located in peripheral locations (Fig 1D). Overall, PRS-

based clustering identified two classes of genes; one with high effectiveness localized in densely

connected regions of the network; and another with high sensitivity distributed at loosely con-

nected regions of the network.

GI PSN displays a remarkable propensity for indirect relationships

The local connectivity of each node can be described by its degree (number of neighbors), and

the behavior of a network is largely characterized by its degree distribution [32]. Thus, we

sought to understand how the degree of nodes and the degree distribution of the GI PSN influ-

ence effectiveness and sensitivity profiles. We found that effectiveness was highly correlated

with degree (Fig 2A, R = 0.9). In contrast, sensitivity was not (ρ = −0.028) although nodes with

low degrees (degree < 10) tended to show higher sensitivity (Fig 2B, ρ = −0.52 for

degree< 10). To investigate the significance of these results, we compared the GI PSN to 100

random networks generated by rewiring the GI PSN edges while keeping the degree distribu-

tion constant (Fig 2C). The GI PSN displayed a significantly stronger degree-effectiveness cor-

relation and a significantly weaker degree-sensitivity correlation than rewired networks (Fig

2D and 2E, p< 0.01, empirical p-value). Thus, the topology of the GI PSN enables perturba-

tion effects to propagate in a manner that cannot be explained simply by its degree-related

characteristics.

dots) are the genes and the edges (gray lines) represent high profile similarity (Pearson’s correlation coefficient of pairs of genetic interaction

profiles (PCC)� 0.2). Gray shaded regions in the center of the network are the result of high connectivity and number of edges in the center. This

network representation is used throughout the paper. Colored parts on the dendrograms along the two axes of the PRS matrix indicate distinct

perturbed and responding gene clusters that are separated from the rest of the genes at the top level of the dendrograms (red and orange,
respectively). These colors are used in the panels C and D to show the properties of the genes in these two clusters. C) Effectiveness (top) and

sensitivity (bottom) boxplots showing the differences between perturbed and responding gene clusters, respectively (���: p< 0.001, permutation

test). D) Representation of the distinct perturbed gene (top) and responding gene (bottom) clusters within the GI PSN.

https://doi.org/10.1371/journal.pcbi.1010181.g001
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Next, we compared the effectiveness and sensitivity distributions of the GI PSN and the

rewired networks. The shapes of effectiveness and sensitivity distributions bear some interest-

ing resemblance between the real and the rewired networks (Fig 2F and 2G, red dotted and

cyan solid curves), but nodes in the GI PSN have overall higher effectiveness and sensitivity

values than nodes in the random networks (Fig 2F and 2G, p< 0.01, empirical p-value). This

Fig 2. The GI PSN displays superior propagation potential compared to randomly rewired networks with identical degree

distributions. A) Degree and effectiveness scatter plot shows strong correlation between degree and effectiveness in the GI PSN

(Pearson’s correlation coefficient, R = 0.9). B) Degree and sensitivity scatter plot shows no correlation between degree and sensitivity in

the GI PSN (Spearman’s rank correlation, ρ = −0.028). C) Degree distributions for the GI PSN (cyan) and 100 rewired networks (red).
These distributions overlap by design. D) The correlation between degree and effectiveness is significantly higher in the GI PSN (cyan
vertical line) than that expected for the rewired networks (dashed red distribution, average R = 0.72, p< 0.01, empirical p-value). E)

The correlation between degree and sensitivity is significantly weaker in the GI PSN (cyan vertical line) than expected from rewired

networks (dashed red distribution, average ρ = −0.99, p< 0.01, empirical p-value). Nodes in the GI PSN (cyan distributions) exhibit

significantly higher effectiveness (F) and sensitivity (G) compared to random network nodes (red dashed distributions, p< 0.01,

empirical p-value).

https://doi.org/10.1371/journal.pcbi.1010181.g002
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finding was robust to variations in the stringency of functional similarity chosen to define the

GI PSN edges: networks constructed using different PCC thresholds consistently displayed

stronger effectiveness and sensitivity profiles compared to their rewired equivalents (S1 Fig).

Interestingly, the difference in the distributions derived from real and rewired networks was

always greater in the case of sensitivity than effectiveness. This is likely due to the lesser depen-

dence on the degree observed for sensitivity relative to effectiveness (Fig 2A).

Overall, since effectiveness and sensitivity measure the potential of the nodes to transmit

and receive information through indirect relationships, our results indicate that the GI PSN

harbors a remarkable propensity for indirect relationships in general, and for sensitivity espe-

cially, relative to expectations based on degree-related characteristics alone. This propensity

originates from the overall network topology of the GI PSN, accounted for by the entire Lapla-

cian matrix—not just the diagonal terms that represent the degree of the individual nodes, but

also the off-diagonal terms that define the specific node-node couplings.

Sensors form “antenna-shaped” biological clusters loosely connected with

the GI PSN

Genes with higher sensitivity are more likely to be involved in indirect relationships due to

their ability to integrate information from other parts of the network. We defined genes with

the highest sensitivity (top 1%) as sensor genes (n = 52). Sensors tended to have low degrees

and, in many cases, had only a single connection (Fig 2B). In protein structure networks, sen-

sor residues identified by PRS tend to be connected to residues with relatively higher effective-

ness [21]. However, this was not the case in the GI PSN where sensor genes tended to be

connected to other low-degree genes (Fig 3A, p< 0.0001, Wilcoxon signed-rank test) with low

effectiveness (Fig 2A). In fact, the first neighbors of sensors had degrees about six orders of

magnitude smaller than the first neighbors of non-sensor genes (Fig 3A). To understand what

distinguishes sensors from the many other low-degree genes in the network that did not dis-

play high sensitivity, we studied their topologies and biological properties in depth.

We first investigated whether sensors tended to be connected to each other in the GI PSN,

which would indicate that they share functional similarities. To this aim, we randomly sampled

genes with the same degree as the sensors and calculated the number of the between-group

edges relative to the total number of sensor edges. We found that sensors had a strong ten-

dency to connect directly to each other relative to expectations based on the degree-controlled

samples (Fig 3B, ~224 fold, p< 0.0001, permutation test with the same degree sampling),

revealing the existence of sensor clusters. We divided sensors into subnetworks consisting of

only sensor genes. We considered subnetworks with at least three nodes as a ‘sensor cluster’

and observed that 41 of 52 sensors in the network formed nine distinct clusters (SC1-9; Fig

3C). Such sensor clusters were not identified when PRS was applied to rewired networks with

the same size and same degree distribution as the GI PSN (only 14% of rewired networks had

at least one cluster with more than three sensors, S2A Fig). Hence, clusters of low-degree sen-

sor genes are unexpected, and likely represent a heretofore undiscovered biological property of

the GI PSN.

Since edges in the GI PSN represent functional similarity, we hypothesized that sensor clus-

ters may correspond to biologically coherent groups of genes. GO enrichment analysis of indi-

vidual sensor clusters revealed significant associations with specific but distinct biological

processes for five of the nine sensor clusters: tricarboxylic acid cycle (TCA) cycle (SC3, resam-

pling-based false discovery rate (FDR) = 0.02), hexose metabolic process (SC4, resampling-

based FDR = 0.03), mitochondria-nucleus signaling (SC5, resampling-based FDR = 0.002),

iron ion transport (SC6, resampling-based FDR = 0.03) and phenylalanine transport (SC9,
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Fig 3. Sensors form biologically coherent low-degree gene clusters on the network periphery. A) The first neighbors of sensors have low average

degree relative to the neighbors of other genes in the network (p< 0.0001, Wilcoxon signed-rank test). B) Sensors are more densely connected to

each other than expected from randomly sampled nodes with the same degree, as measured by the percentage of the between-group (sensor-to-

sensor) edges among the total edges the nodes have (sensor group: cyan vertical line; groups of randomly sampled nodes with same degree: red
distribution, ~224 fold, p< 0.0001, permutation test with the same degree sampling). C) Representation of sensor genes in the GI PSN. Node colors

represent sensor clusters (groups of 3 or more directly connected sensors) and GO enriched clusters are specified in the legend (resampling-based
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resampling-based FDR = 0.006) (Fig 3C, S1 Data). In contrast, only 3% of rewired networks

showed at least one sensor cluster with a GO enrichment (S2B Fig). While sensor genes had a

lower degree than other genes in the network (Fig 3D, p< 0.001, Kruskal-Wallis, group-wise

comparison including non-sensor genes), we did not observe significant differences in the

average node degree between the nine sensor clusters (Fig 3D, p = 0.16, Kruskal-Wallis, group-

wise comparison excluding non-sensor genes). Intriguingly, the sensor cluster SC9 related to

‘phenylalanine transport’ displayed the highest sensitivity (Fig 3E). Altogether, these analyses

show that PRS identified well-defined clusters of sensor genes, each involved in distinct cellu-

lar processes, as the nodes most likely to sense signals or integrate information from the rest of

the cell through indirect relationships.

We therefore investigated whether sensors and sensor clusters may be involved in cellular

signaling. We explored this hypothesis by examining the literature describing previous knowl-

edge about the sensor genes and gene ontology (GO) functional annotations. Generally, the

GO enrichments of five of the nine clusters (Fig 3C) indicated roles in sensing, responding to

metabolic cues, and cellular transport. Only the SC6, but none of the other eight sensor clus-

ters, mapped to a well-characterized signaling hub (SC6 contained four mitochondria-nucleus

signaling genes, RTG1, RTG2, RTG3, andMKS1, out of seven sensor genes in the cluster) [33].

Yet, five of the nine sensor clusters (SC4, SC5, SC6, SC7, SC8, and SC9) contained at least one

sensor gene annotated with a known signaling function (GO:0023052; seven sensor genes

total) or with known functions related to cell communication (GO:0007165; 11 sensor genes

total). For example, the SC5 members AFT1 and FET3 are annotated with ‘cell communica-

tion’ due to their involvement in iron sensing [34]. Further examination showed that addi-

tional sensor genes have been described as the targets of signaling pathways. For example, four

of six genes in SC9 (STP1, STP2, AGP1, and BAP2) are known to be regulated by the Ssy1p–

Ptr3p–Ssy5p (SPS) complex, which senses extracellular amino acids [35]. Altogether our analy-

ses revealed that 15 / 52 sensor genes encode known signaling proteins or signaling targets and

that 5 / 9 sensor clusters contain at least one gene encoding a known signaling protein or sig-

naling target, although as a group the 52 sensors genes were not enriched in signaling or

related gene ontology (GO) terms (resampling-based FDR> 0.1, S2 Data). These results sug-

gest that the sensors identified by PRS may correspond to key recipients of cellular signals and

that future studies are likely to unveil novel roles in signaling for many of the 37 sensor genes

that are not currently known to be involved in signaling.

To understand why these 52 genes and nine clusters, but not other low-degree genes or sig-

naling-related clusters, were identified by PRS as the strongest sensors of cellular information,

we inspected their local topology more closely. Interestingly, we found that six of nine sensor

clusters were connected to the rest of the network by a single non-sensor node, creating

antenna-shaped motifs (Fig 3F). These antenna motifs appeared to form an information bot-

tleneck where the perturbation effects can enter the sensor cluster but cannot escape easily and

transfer to other nodes outside of the cluster. We found that similar antenna-shaped motifs

also characterized sensor clusters detected by PRS in networks constructed with more strin-

gent cutoffs for functional similarity, even though the number and identity of these clusters

were different from those in the GI PSN (S3 Fig). Additionally, the few sensor clusters

false discovery rate (FDR)< 0.1). Node colors and shapes, and edge colors were used similarly for the panels D, E, F, and the Fig 5. D) Sensor

clusters (SCs 1–9) exhibit comparable degrees to each other and significantly lower degree than non-sensor genes in the network (black box,

p< 0.001, Kruskal-Wallis, group-wise comparison including non-sensor genes). E) The sensor clusters have similar sensitivity, except for SC9

(‘phenylalanine transport’) which shows the highest sensitivity (�: p< 0.1, ���: p< 0.001 for corrected p-values calculated by Mann-Whitney). F)

Topology of sensor clusters and the nodes that connect these clusters to the rest of the network are shown (Triangles: sensors, Circles: non-sensor

connecting node, asterisk: clusters with antenna motifs).

https://doi.org/10.1371/journal.pcbi.1010181.g003
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identified in rewired networks with the same degree distribution tended to show similar

antenna motifs (S2C Fig). Thus, the sensitivity of lower degree nodes within antenna motifs, as

opposed to those outside the motifs, may be increased by the local accumulation of perturba-

tion effects.

Effectors form biological clusters centrally integrated within the GI PSN

To investigate the genes that exert the strongest influence on the other genes in the network

through indirect relationships, we defined genes with the highest effectiveness (top 1%) as

effector genes (n = 52) and studied their topological and biological properties. Unlike sensors,

effectors tended to connect to other high-degree genes (Fig 4A, p< 0.0001, Wilcoxon signed-

Fig 4. Effectors form biologically coherent high-degree gene clusters at the center of the network. A) The neighbors of effectors have high

average degree relative to the neighbors of other genes in the network (p< 0.0001, Wilcoxon signed-rank test). B) Representation of effector

genes in the GI PSN. Node colors represent effector clusters (ECs) with distinct GO term enrichments (node colors and shapes, and edge colors

were used similarly for the following figure panels, resampling-based FDR< 0.1). C) Effectors have a higher degree than other genes and the EC2

with ‘Golgi vesicle transport’ enrichment has a higher average degree than other effector clusters (ns: non-significant, �: p< 0.05, ���: p< 0.001,

for corrected p-values calculated by Mann-Whitney). D) Effectiveness values are not significantly different between different clusters of effectors

(p = 0.36, Kruskal-Wallis).

https://doi.org/10.1371/journal.pcbi.1010181.g004
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rank test). However, effector-effector edges consisted of only 7% of all edges involving effectors

due to their extremely high degree. Nevertheless, they formed distinct effector clusters (ECs),

with no direct connections across different effector clusters. We could separate all 52 effectors

into three connected components, each associated with a distinct cellular process based on GO

enrichment analysis: chromosome segregation (EC1, resampling-based FDR = 0.002), Golgi

vesicle transport (EC2, resampling-based FDR = 0.002), and respiratory complex assembly

(EC3, resampling-based FDR = 0.002). Similar effector genes (S4A Fig) and GO term enrich-

ments (S4B Fig) were identified when PRS was applied to networks constructed with more

stringent functional similarity thresholds.

We investigated whether the effector genes and effector clusters were involved in biological

signaling. EC1 did map to a well-characterized signaling hub with significant GO enrichments

for cell cycle checkpoint signaling (GO:0000075, resampling-based FDR = 0.002) and intracel-

lular signal transduction (GO:0035556, resampling-based FDR = 0.048). EC1 was also

enriched in chromosome segregation and cell cycle (resampling-based FDR = 0.002 for both).

On the other hand, EC2 and EC3 had GO enrichments in Golgi vesicle transport and respira-

tory complex assembly (and related categories, Fig 4B, resampling-based FDR = 0.002, S1

Data) with no explicit relationship to signal transduction. We found that all three clusters dis-

play significantly higher average degrees than other genes in the network (Fig 4C, p< 0.001,

Kruskal-Wallis, group-wise comparison including non-effector genes) and that effectors

involved in Golgi vesicle transport have a slightly but significantly higher average degree than

effectors from the other two effector clusters (Fig 4C, p< 0.001, Kruskal-Wallis, group-wise

comparison excluding non-effector genes). However, there was no significant difference in

effectiveness values between the three clusters (Fig 4D, p = 0.36, Kruskal-Wallis).

In summary, effectors formed three biological clusters that are centrally integrated within

the GI PSN while being clearly distinct from each other. While one of the effector clusters,

EC1, mapped to a well-characterized signaling hub, the other two mapped to two essential

functions, vesicular transport of proteins through the Golgi apparatus and respiratory complex

assembly, both of which are highly regulated processes that may require the involvement of

highly effective propagation of signals. For example, the trafficking and transport function of

the Golgi apparatus is intimately related to multiple intracellular signaling pathways [36,37];

likewise, multiple pathways regulate the mitochondrial respiratory complex assembly [38].

Future analyses might therefore reveal the potential of the genes in EC2 and EC3 to play roles

in cellular trafficking, communication and signaling that are currently under-appreciated.

Systematic detection of indirect relationships in the GI PSN

Our PRS analyses identified effector and sensor genes as the key propagation-mediating genes

that control information flow in the GI PSN. To investigate the indirect relationships between

effectors and sensors, we extracted the shortest paths connecting the three effector clusters to

the nine sensor clusters. We first identified 4,815 shortest paths between effector and sensor

genes, including multiple shortest paths between individual effector-sensor cluster pairs (S5A

Fig). We selected the 27 paths with the highest total perturbation effects per effector-sensor

cluster pair as representing the strongest and possibly most meaningful indirect relationships

between effectors and sensors (Figs 5A–5C and S5B–S5D). Most (15 of 27) of these paths com-

prised biologically coherent groups of genes as shown by GO enrichment analysis (Fig 5A–5C;

resampling-based FDR < 0.1).

Based on the PRS theory, the indirect relationships between effector and sensor clusters are

likely to constitute the pillars of the higher-order organization of the GI PSN. The paths identi-

fied here therefore represent novel biological hypotheses for unraveling the molecular
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Fig 5. PRS identifies biologically meaningful indirect relationships without relying on prior knowledge. A-C) Connection effector clusters (EC1 to EC3,

respectively) to sensor clusters chosen based on shortest paths with the highest propagated information. Paths with GO enrichments are highlighted with

ellipses and the most significant GO terms are indicated (resampling-based FDR< 0.1). The identity of all genes in these subnetworks is shown in S5 Fig. D)

The shortest path from effector genes involved in chromosome segregation (EC1) to sensors involved in mitochondria-nucleus signaling (SC6), as identified by

shortest path between the effector gene CTF4 and the sensor gene RTG1. E) Representation of the path shown in (D) within the GI PSN.

https://doi.org/10.1371/journal.pcbi.1010181.g005
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mechanisms of intra-cellular communications between distinct cellular processes. To gain a

better understanding of the predictive value of PRS paths between effector and sensor clusters,

we further inspected the path between the cluster of effectors related to chromosome segrega-

tion (EC1) and the cluster of sensors related to mitochondria-nucleus signaling (SC6, Fig 5D

and 5E). The nodes on this path showed no biological enrichments based on prior knowledge

(resampling-based FDR > 0.1, Fig 5A).

The sensor cluster SC6 consisted of two smaller sub-clusters corresponding to distinct but

related cellular pathways. The first sub-cluster contained the RTG1, RTG2, RTG3, andMKS1
genes, which control mitochondria-nucleus signaling, also known as the retrograde (RTG)

pathway. This pathway controls the production of nuclear-encoded mitochondrial genes [33].

Rtg1p, Rtg2p, Rtg3p are positive regulators of the RTG pathway, while Mks1p is a negative reg-

ulator [39,40]. The second sub-cluster consisted of IDH1, IDH2, which are subunits of the

mitochondrial NAD(+)-dependent isocitrate dehydrogenase that catalyzes the oxidation of

isocitrate to α-ketoglutarate in the TCA cycle, and IRC14. IRC14 is a dubious gene that over-

laps with IDH2; thus high functional similarity to IDH1 and IDH2 is likely to be due to this

overlap [41] (S1 Text). IDH1 and IDH2 are known to be regulated by Rtg1p and Rtg3p when

the RTG pathway is activated [33]. The two subclusters that make up the sensor cluster thus

capture a well-established signaling relationship between the RTG and TCA cycle.

PRS identified two histone genesHHT1 (histone H3) andHHF1 (histone H4), and an

uncharacterized gene YDL159W-A, along the strongest PRS path connecting this sensor clus-

ter with EC1 which is related to chromosome segregation. Interestingly, Ng et al. showed that

several residues on histones H3 and H4 are critical for accurate chromosome segregation,

causing defects in kinetochore stability and increased chromosome loss when mutated [42].

Based on the GI PSN network topology alone, the PRS path pinpointed this previously

described relationship between chromosome segregation and the H3 and H4 histone genes,

and predicted that H3 and H4 are involved in a critical indirect relationship with the TCA

cycle / mitochondria-signaling. The molecular mechanisms linking TCA cycle / mitochon-

dria-signaling to histones and chromosome segregation are not presently well characterized.

However, Galdieri et al. showed that a decrease in the expression of the histones H3 and H4

can activate the RTG pathway, and increase the expression of IDH1 and IDH2 [43]. Therefore,

taking all components of this PRS path together, a novel prediction emerges according to

which the regulation of H3 and H4 expression levels could be a key mechanism linking the

correct progression of chromosome segregation to central TCA metabolism through the RTG

pathway. Based on our examination of this PRS path, PRS has the potential to capture biologi-

cally meaningful indirect relationships between cellular processes unbiasedly.

Sensor and effector clusters are conserved properties of genetic networks

We showed that the existence of sensor clusters was a property of the biological structure of

the yeast GI PSN as we were not able to observe sensor clusters in the randomized networks

with the same degree distribution as the yeast GI PSN (S2 Fig). To investigate whether this is

unique to the yeast GI PSN, we applied PRS to a GI PSN network in Schizosaccharomyces
pombe [30] and a coessentiality network in human [44]. S. pombe GI PSN network was con-

structed similarly to the yeast GI PSN but is much smaller, based on the genetic interaction

profile similarities between only 1,145 genes. On the other hand, the human coessentiality net-

work contains 3,238 genes, and the edges represent single mutant profile similarities in 276

cancer lines as opposed to double mutant phenotypes. We applied the PRS strategy to identify

sensors and effectors in these networks and investigated their topological and biological

properties.
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In line with our observations for the yeast GI PSN (Fig 2), we observed stronger effective-

ness and sensitivity values for the human and S. pombe networks than for random networks of

matched size and degree distribution, indicating that the real biological networks have a stron-

ger propensity for indirect relationships than expected by chance (S6 and S7 Figs). We identi-

fied 32 sensors in the human coessentiality network (Fig 6A) and 57 sensors in the S. pombe
GI PSN (Fig 6B), consisting of lower-degree genes (S6 and S7 Figs) and forming three sensor

clusters in each network. Two sensor clusters in each network were enriched for GO biological

process terms (Fig 6A and 6B, S3 and S4 Data). Sensor clusters in the human coessentiality

network were found to be enriched for IκB kinase/ NF-κB signaling or histone deacetylation

(HSC1 and HSC3, resampling-based FDR = 0.002 and 0.038, respectively). Sensor clusters in

the S. pombe GI PSN had GO enrichments for cellular metabolic compound salvage or protein

modification terms (PSC1 and PSC3, resampling-based FDR = 0.075 and 0.036, respectively).

The organization of sensor genes into network clusters with shared GO terms was not

expected from the size and degree distribution of the human and S. pombe networks (S8 Fig,

p< 0.01, empirical p-value, for both networks).

Both networks showed effector clusters consisting of higher degree genes (Figs 6C, 6D, S6

and S7). One of the effector clusters in the human coessentiality network was enriched for pep-

tide metabolic processes and similar terms (HEC1, resampling-based FDR = 0.002, S3 Data)

and the effector cluster in the S. pombe GI PSN was enriched for monocarboxylic acid meta-

bolic processes (PEC1, resampling-based FDR = 0.048, S4 Data). Overall, our results reveal

that the existence of central effector clusters and peripheral sensor clusters may be a funda-

mental property of genetic networks that is conserved across deep evolutionary distances.

Discussion

In this study we adapted the PRS methodology, initially designed for characterizing allosteric

signal transductions in molecular structures [20–22], to study the indirect relationships

between gene (clusters) which are uniquely favored by the global architecture of genetic simi-

larity networks. Our PRS analyses uncovered biologically coherent network clusters of effector

and sensor genes critical for indirect relationships in yeast, human and S. pombe. Effectors are

central to the network, whereas sensors tend to form antenna-shaped motifs at the network

periphery. While the topological and biological importance of effectors could have been

highlighted using other network analysis methods, we view the identification of critical sensor

nodes as a key methodological innovation in the study of cellular networks. Sensors could not

have been identified by existing propagation-based methods for the study of indirect relation-

ships, which lack the ability to rank nodes based on their absolute propensity to integrate

information, or by topology-based approaches such as centrality metrics or clustering tech-

niques, which would forgo the sensors due to their low connectivity.

The perturbation effects that are generated by PRS correspond to the propagation of func-

tional couplings through a network representation of the cell and cannot be directly equated

with biological signaling in the molecular sense. Yet, we find that many (but not all) sensor

genes identified by PRS in the yeast GI PSN are known to be involved in molecular signal

transduction and cellular communication and that one sensor cluster (SC6) and one effector

cluster (EC1) map to well-established signaling hubs. This suggests that the indirect relation-

ships identified using PRS in the yeast GI PSN hold clues to generate novel hypotheses regard-

ing the molecular mechanisms of cross-pathway signaling. We examined the genes mediating

a key indirect relationship identified by PRS between an effector cluster and a sensor cluster.

This led to the formulation of a novel hypothesis implicating a regulation of histone H3 and

H4 expression levels as the possible key mechanism coordinating the correct progression of
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chromosome segregation to central carbon metabolism through induction of the mitochon-

dria-nucleus retrograde pathway. Our work illustrates how the unbiased detection of indirect

relationships between seemingly unrelated cellular processes can enable the generation of

novel mechanistic hypotheses. We anticipate that many hypotheses emerging from PRS analy-

ses of genetic similarity networks will fuel future studies and illuminate the molecular mecha-

nisms of indirect relationships between cellular pathways and processes.

Fig 6. Genetic similarity networks for human and Schizosaccharomyces pombe show clusters of sensors and

effectors. Sensors (triangles) and effectors (squares) in human coessentiality network (A-C, respectively) and in

S. pombeGI PSN (B-D, respectively). Node colors represent sensor clusters (HSC1-3 in A, and PSC1-3 in B) or effector

clusters (HEC1-2 in C or PEC1 in D). GO enrichments are indicated within SC or EC labels in the legends.

https://doi.org/10.1371/journal.pcbi.1010181.g006
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PRS analyses also provided novel insights about the high-level organization of indirect rela-

tionships in the cell. We found that the yeast, human and S. pombe genetic similarity networks

all display a remarkable potential for indirect relationships relative to expectations based on

their sizes and degree distributions. The organization of sensor nodes into clusters also distin-

guished the genetic networks from expectations. This suggests that evolutionary optimization

for efficient molecular communication between pathways may translate to a network topology

with enhanced capabilities for information sensing and transmitting. Such topological optimi-

zation may include the hierarchical organization of increasingly more connected clusters pre-

viously described for genetic similarity networks [27,30,44] as well as the lower-degree

peripheral sensor clusters we discovered.

Altogether, our work demonstrates that PRS is a promising strategy for the unbiased study

of indirect relationships in cellular networks. Beyond guilt-by-association [10] and local net-

work context analyses [1], PRS provides an avenue to illuminate how genes can communicate

and affect processes beyond their local neighborhood. Importantly, PRS eliminates the need to

restrict these questions to source genes chosen based on prior knowledge. Our analyses add to

the evidence [25,26] that spring-based physical modeling of cellular networks can be a power-

ful tool to uncover functional (effector or sensor) modules and their coupling within the

higher-order organization of the cell. We hope that more insights will arise from future work

modeling cellular networks as physical 3D objects.

We showed the applicability and utility of PRS analysis on three genetic similarity networks

from different species and in theory, PRS can be applied to any network representation as long

as Laplacian-based approaches are suitable to capture the graph structure [45]. Extremely large

networks where the number of nodes approaches infinity may not be suitable. PRS may also

be of limited use if the propagations are dominated by one or a few nodes in the network. This

so-called “tip effect”, where large fluctuations of the free ends of a structure dominate the

dynamics, may obscure the detection of more meaningful relationships withing the structure

[46]. Despite these limitations, we anticipate that PRS strategies will become a useful tool for

the study of complex networks in other realms of biology (e.g., protein interactions, gene regu-

lation, etc.) and science (e.g., social, economic, etc.), where the identification of effectors and

sensors of signals, or information, together with the PRS paths may reveal important commu-

nication hubs and lines.

Materials and methods

Yeast genetic interaction profile similarity network

We obtained the data from TheCellMap [41] (https://thecellmap.org/costanzo2016/, file:

Genetic interaction profile similarity matrices). Details of the network construction can be

found in the Supplementary Materials of Costanzo et al. [27] under the “Constructing genetic

interaction profile similarity networks” section. In brief, the genetic interaction profile similar-

ity between gene i and gene j is the Pearson’s correlation coefficient (PCC) between the genetic

interaction profile vectors of i and j, which consist of genetic interaction scores experimentally

estimated for all possible double mutants involving gene i or gene j:

Profilesimilarityij ¼ PCCðProfilei; ProfilejÞ:

We used a PCC cutoff of 0.2 following the original publication [27], and constructed the GI

PSN containing every gene with at least one profile similarity of PCC > 0.2. This resulted in a

network with 5,272 nodes and 39,866 unweighted and undirected edges. To test the effect of

chosen threshold we analyzed networks generated with PCC cutoffs of 0.05, 0.1, 0.25, 0.3, 0.35,

and 0.4 and we presented the results in S1, S3 and S4 Figs. The visual network representations
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throughout the paper were generated using Fruchterman-Reingold force-directed layout [47]

algorithm implemented in Python network analysis package networkx [48].

Elastic network models and perturbation response scanning

We used the Gaussian network model (GNM) to represent the GI PSN as an elastic bead-and-

spring network object. The overall connectivity of the network is represented by a Laplacian

(also called Kirchhoff) matrix, whose diagonal elements are the degree of each node, and the

non-zero, off-diagonal elements (equal to -1) indicate the connected pairs of nodes [23]. We

first took the largest connected component of the GI PSN, which was represented by a GNM

of n = 5,183 nodes and 39,816 edges. The corresponding Laplacian was used to perform the

PRS analysis as described by Li et al. [49]. Mainly, we used calcPerturbResponse function in

ProDy [50], a Python API designed originally for analyzing protein dynamics, to calculate the

PRS matrix. PRS was originally formulated under the framework of the anisotropic network

model (ANM) [20,21] and extended to the GNM by Li et al. [49]. In brief, the linear response

theory states that in the presence of an external force, the positional displacements of all n
nodes in the system under the equilibrium condition are dictated by the force balance

f ¼ HDr; ð1Þ

where f and Δr are the 3n-dimensional external force and displacement vectors, respectively;

and H is the 3n×3n force constant matrix called Hessian whose (pseudo) inverse is the 3D

covariance matrix of the equilibrium fluctuations/displacement of the network nodes. There-

fore, the displacements of the nodes are evaluated for a given f, provided that the Hessian is

known, using

Dr ¼ H� 1f ; ð2Þ

Under isotropic conditions represented by the GNM, the external forces and displacements

can be reduced to n-dimensional vectors, D~r and ~f , the elements of which represent the sizes

of the displacements and forces corresponding to the n nodes; and the Hessian is replaced by

the n×n symmetric connectivity matrix, or the so-called Kirchhoff or Laplacian, Γ, multiplied

by a uniform spring constant γ. The above equation is then rewritten as

D~r ¼
1

g

� �

Γ� 1~f : ð3Þ

Note that this equation can be written for the response D~rji of all residues to a force exerted

on the node i, i.e.,

D~rji ¼
1

g

� �

Γ� 1~f i; ð4Þ

where ~f i ¼ ½0 0 . . . 0 ~f i 0 . . . 0�
T

is the force vector exerted on node i, all elements of which are

zero, except the ith, ~f i. The PRS matrix P in the GNM is evaluated by repeating the above oper-

ation for all nodes 1�i�n, and normalization of the result to remove the intrinsic biases

(node-specific variance σi), i.e.,

P � ½D~rj
1
D~rj

2
. . . :D~rjn� ¼

1

g

� �

Γ� 1½diagðs1; s2: . . . :snÞ�
� 1
½~f 1

~f 2 . . . ~f n� ð5Þ

where ½~f 1
~f 2 . . . ~f n� is an n×nmatrix the ith column of which is ~f i; ð1=gÞΓ

� 1 serves as the trans-

fer function, and the diagonal matrix [diag(σ1, σ2.. . ..σn)]−1 is the normalization factor. The ijth
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element Pij of P represents the response of node j to perturbation at node i. We note that σi
simply represents the square-fluctuation of node i under equilibrium conditions, which is an

intrinsic property uniquely defined by the network topology and readily computed by the

GNM as the ith diagonal element of the covariance matrix (which is inversely proportional to

Γ). The normalization accounts for the topology-defined adaptability of the nodes and breaks

the symmetry of the covariance matrix. The row and column averages of the PRS matrix give

the effectiveness and the sensitivity profiles as a function of gene index [1, n], respectively.

S. pombe genetic interaction profile similarity network

We obtained data from Ryan et al. [30] (file: supplementary data S3). Ryan et al. used PCC

between genetic interaction profiles and then converted PCC values into a similarity metric

using logistic regression (see Ryan et al. supplementary material, Similarity score section). We

used similarity score threshold of 0.1 to construct the network, as it was suggested in Ryan

et al. This generated a network with 1,272 nodes and 5,011 unweighted edges. The giant com-

ponent of this network with 1,145 nodes and 4,933 edges was used for PRS analyses as

explained above. Genes with the top 5% of the effectiveness and sensitivity values were taken

as effectors and sensors for this network.

Human coessentiality network

We obtained data from Kim et al. [44] (file: supplementary table S5). This dataset represents

high confidence positive profile similarities with Bonferroni-corrected p-values less than 0.05.

The network contained 3,483 nodes and 68,813 edges with the giant component having 3,238

nodes and 68,641 edges. The giant component of this network was used for PRS analyses as

explained above. Genes with the top 1% of the effectiveness and sensitivity values were taken

as effectors and sensors for this network.

PRS matrix clustering

To cluster the PRS matrix elements, we used a hierarchical clustering algorithm implemented

in the Python package SciPy. We first capped the outliers in the PRS matrix by normalizing the

values above 95% of the matrix to be equal to 95% value. Then we calculated the pairwise stan-

dardized Euclidean distance between genes using rows or columns of the PRS matrix as the

coordinates and used ward linkage metric to construct a dendrogram of the genes. The distinct

perturbed and responding gene clusters were extracted by cutting the dendrogram tree to cre-

ate two sub-dendrograms and taking the smaller sub-dendrogram as the distinct perturbed or

responding gene clusters. Clustered heatmap and dendrograms were visualized using R pack-

age ComplexHeatmap [51].

Permutation test

We calculated the significance of differences between distinct perturbed and responding gene

clusters and other genes in the networks using the following permutation test. We shuffled the

effectiveness (or sensitivity) values of all genes and calculated the differences between mean

values of distinct perturbed cluster (or responding cluster) and other genes. We then used

empirical p-value formula following Davison and Hinkley [52]:

p ¼
r þ 1

nþ 1
ð6Þ

where r is how many times the unshuffled difference in means is smaller than shuffled
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difference in means and n is the total number of shuffling (n = 10000, in this calculation). The

significance level was taken as α<0.05.

Network properties

The following definitions are used. Node degree is the number of edges of a given node. Aver-

age neighbor degree is the average degree of the first neighboring nodes of a given node. Per-

centage of in-between edges for a given group of nodes is the ratio of the total number of edges

that are directly connecting the nodes in the group to the total number of edges the nodes in

the group have.

The relationships of effectiveness and sensitivity with the degree distribution were calcu-

lated by using two measures of correlations: Pearson’s correlation coefficient (R) and Spear-

man’s rank correlation coefficient (ρ). R was used to measure effectiveness and degree

correlation. ρ was used to measure sensitivity and degree correlation. cor.test function in R was

used to measure these values by changing themethod parameter, respectively.

Network rewiring

To rewire the network while keeping the degree distribution the same, we applied an edge

swapping procedure. A swap between two randomly selected edges is accepted if the network

connectivity is not violated, i.e., no network node is disconnected from the network, and if the

newly generated edges are not already in the network. This process is repeated a minimum of

10 times the number of edges in the network. The resulting rewired network maintains the

same degree for each node as the original network but has different connections. For this pro-

cess, we used connected_double_edge_swap function of networkx.

Empirical p-value calculations

Empirical p-values were calculated using rewired network properties. For each property we

sought to investigate its significance, we compared the mean value calculated using the real GI

PSN network to mean values calculated from 100 rewired networks. We then used the same

empirical p-value formula in Eq 6 where r is the number of times the mean of the real network

property is smaller (or bigger, depending on the hypothesis) than the mean of the rewired net-

work properties and n is the total number of rewired networks (n = 100, in this analysis).

Gene ontology enrichment analyses

GO trees (file: go-basic.obo) and annotations (files: sgd.gaf, pombase.gaf, goa_human.gaf) were

downloaded from http://geneontology.org/ on March 10, 2022. We used the Python package,

GOATools [53], to calculate the number of genes associated with each GO term in the study

group and the overall population of (all) genes for each respective network. We excluded

annotations based on the evidence codes ND (no biological data available), IGI (inferred from

genetic interaction), and HGI (inferred from high throughput genetic interaction) to remove

any associations originating from the networks we used. We identified GO term enrichments

by calculating the likelihood of the ratio of the genes associated with a GO term within a study

group (e.g., a sensor or an effector cluster) given the total number of genes associated with the

same GO term in the background set of all genes in the network. We applied Fisher’s exact test

and resampling-based false discovery rate (FDR) [54] multiple testing correction to calculate

corrected p-values for the enrichment of GO term in the study group. For each GO enrich-

ment test, we calculated p-values for a random set of same size for 500 times to generate an

empirical p-value distribution. FDR is then calculated using Eq 6 where r is the number of
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cases that real p-values being smaller than empirical p-values. FDR< 0.1 was taken as a

requirement for significance.

Sensors and effectors group comparisons

Kruskal-Wallis test was used to statistically investigate the differences between effector or sen-

sor groups in terms of their degree, effectiveness or sensitivity values for the analyses shown in

Figs 3D and 3E, 4C and 4D. We applied kruskal.test function in R with a significance level of α
= 0.05. To find the group that deviates from the null model, we used Tukey’s HSD test [55],

which is equivalent to a pairwise Wilcoxon test with multiple testing corrections.

PRS path analysis

For each path starting at gene i, we took ith row values, which represents the response of every

gene when gene i is perturbed, of the PRS matrix as node weights. To find the shortest path

with the maximum information, we identified unweighted shortest paths from node i to all

other nodes. When there are multiple shortest paths, we selected the one with the maximum

sum of node weights. To identify a PRS path between clusters of genes, we applied the same

strategy to all pairs of genes in two clusters and selected the shortest path with highest weight

as shortest path between clusters. Note that for the cases where there is only single shortest

path, PRS path and shortest path are the same. Cytoscape [25] and networkx were used to visu-

alize the paths between effectors and sensors. GO enrichment analysis was done as explained

above using the genes that are on the paths between effector and sensor clusters.

Supporting information

S1 Data. Significant GO terms with FDR < 0.1 for sensor and effector clusters in the yeast

GI PSN.

(CSV)

S2 Data. 15 sensor genes in the yeast GI PSN with cellular roles in signaling.

(CSV)

S3 Data. Significant GO terms with FDR < 0.1 for sensor and effector clusters in the

human coessentiality network.

(CSV)

S4 Data. Significant GO terms with FDR < 0.1 for sensor and effector clusters in the S.

pombe GI PSN.

(CSV)

S1 Text. Overlapping genes and neighboring gene effects.

(DOCX)

S1 Fig. Real networks show higher information propagation potential irrespective of cho-

sen Pearson’s correlation coefficient between genetic interaction profiles (PCC) threshold.

Difference of effectiveness (A) and sensitivity (B) profiles between real (solid cyan) and ran-

domly rewired networks (dashed red) for different PCC thresholds.

(TIF)

S2 Fig. Rewired networks show significantly less sensor clusters compared to real network.

A) Number of sensor clusters found for rewired networks compared to the real GI PSN. B)

Number of GO enriched sensor clusters found for rewired networks compared to the real GI

PSN. C) Number of antenna motifs out of 68 rewired networks which had sensor clusters. D)
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An example rewired network with the same degree distribution of the GI PSN, map showing

sensors. It can be seen that while there are same number of sensors (n = 52) identified, there

are only a handful of sensor-sensor edges, meaning no sensor clusters are formed, as opposed

to clusters formed in the real PSN.

(TIF)

S3 Fig. Different PCC thresholds result in distinct sensor characteristics with similar

antenna motifs. A) Percentage of common sensors found when using different PCC thresh-

olds (percentage of the common sensors between the thresholds shown on the x and y axes

divided by the number of sensors identified at threshold shown on y-axis). There are several

reasons we observe these differences. Due to the mathematical nature of GI PSN, the change of

PCC thresholds will lead to different networks. For example, networks constructed with higher

thresholds contain genes with higher similarity. Costanzo et al. [27] showed that these different

networks represent different biology. Their results showed that a PCC� 0.05 would be

enriched in co-localization relationships while a PCC� 0.4 would be enriched in pathways

and protein complexes. Additionally, higher thresholds would result in a smaller network.

Taken together, the identification of different sensors in different GI PSN networks is not sur-

prising. B) Number of sensor clusters identified at the given threshold. At PCC� 0.2 we iden-

tify the most sensors. When PCC < 0.2 thresholds are used, the network is near complete, thus

sensors create a single component that cannot be separated into different connected compo-

nents. For PCC� 0.25, the increased threshold leads to smaller networks, thus fewer sensors,

and sensor clusters. C) Number of GO enriched sensor clusters at different thresholds. D) Sen-

sors in different PCC threshold networks. Similar to Fig 3F, most sensor clusters show antenna

motifs where the sensors are connected to the rest of the network via a single node.

(TIF)

S4 Fig. Effectors in different threshold networks show similarities. Percentage of common

effectors (A) and common GO terms found for effectors (B) when using different PCC thresh-

olds (overlap for the thresholds shown on x and y axes divided by the total number when using

the threshold on y-axis). PCC threshold 0.2, which we used as default for our study, has many

common effectors found in higher threshold networks. The higher overlap on the identified

effectors and GO terms could be expected given the degree of the effectors. Due to the higher

degree of the effectors in the PCC� 0.2 network, they are less likely to be removed from the

network and keep their relatively higher degree in higher threshold networks.

(TIF)

S5 Fig. PRS can identify the most information carrying paths among thousands of possible

shortest paths between effectors and sensors. A) Each cell shows the number of shortest

paths identified between the effector cluster shown on the y-axis and sensor cluster shown on

the x-axis when considering all possible shortest paths between all effector-sensor pairs for

each cluster. B-D) All shortest paths between three effector clusters and nine sensor clusters

which are chosen based on their high PRS signal which is calculated by the sum of response

magnitudes of genes on a shortest path.

(TIF)

S6 Fig. The human coessentiality network displays superior propagation potential com-

pared to randomly rewired networks with identical degree distributions. A) Degree and

effectiveness scatter plot shows strong correlation between degree and effectiveness in the

human coessentiality network (R = 0.99). B) Degree and sensitivity scatter plot shows a small

positive correlation between degree and sensitivity in the human coessentiality network (ρ =

0.14). C) Degree distributions for the human coessentiality network (cyan) and 100 rewired
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networks (red). These distributions overlap by design. D) The correlation between degree and

effectiveness is significantly higher in the human coessentiality network (cyan vertical line)
than that expected for the rewired networks (dashed red distribution, average R = 0.94,

p< 0.01, empirical p-value). E) The correlation between degree and sensitivity is significantly

weaker and has a different sign in the human coessentiality network (cyan vertical line) com-

pared to expectations from rewired networks (dashed red distribution, average ρ = -0.88,

p< 0.01, empirical p-value). Nodes in the human coessentiality network (cyan distributions)
exhibit significantly higher effectiveness (F) and sensitivity (G) compared to random network

nodes (red dashed distributions, p< 0.01, empirical p-value).

(TIF)

S7 Fig. The S. pombe GI PSN coessentiality network displays superior propagation poten-

tial compared to randomly rewired networks with identical degree distributions. A) Degree

and effectiveness scatter plot shows strong correlation between degree and effectiveness in S.
pombe GI PSN (R = 0.88). B) Degree and sensitivity scatter plot shows a small negative correla-

tion between degree and sensitivity in S. pombe GI PSN (ρ = -.29). C) Degree distributions for

S. pombe GI PSN (cyan) and 100 rewired networks (red). These distributions overlap by

design. D) The correlation between degree and effectiveness is significantly higher in S. pombe
GI PSN (cyan vertical line) than that expected for the rewired networks (dashed red distribu-
tion, average R = 0.82, p< 0.01, empirical p-value). E) The correlation between degree and

sensitivity is significantly weaker in S. pombe GI PSN (cyan vertical line) than expected from

rewired networks (dashed red distribution, average ρ = -0.98, p< 0.01, empirical p-value).

Nodes in S. pombe GI PSN (cyan distributions) exhibit significantly higher effectiveness (F)

and sensitivity (G) compared to random network nodes (red dashed distributions, p< 0.01,

empirical p-value).

(TIF)

S8 Fig. Rewired networks show less sensor clusters compared to real networks. A) Number

of sensor clusters found for rewired networks compared to the real human coessentiality net-

work. B) Number of GO enriched sensor clusters found for rewired networks compared to the

real human coessentiality network. C) Number of sensor clusters found for rewired networks

compared to the real S. pombe GI PSN. B) Number of GO enriched sensor clusters found for

rewired networks compared to the real S. pombe GI PSN.

(TIF)
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