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Abstract 11 

Ribosome profiling experiments demonstrate widespread translation of eukaryotic genomes outside of 12 

annotated protein-coding genes. However, it is unclear how much of this “noncanonical” translation 13 

contributes biologically relevant microproteins rather than insignificant translational noise. Here, we 14 

developed an integrative computational framework (iRibo) that leverages hundreds of ribosome 15 

profiling experiments to detect signatures of translation with high sensitivity and specificity. We 16 

deployed iRibo to construct a reference translatome in the model organism S. cerevisiae. We identified 17 

~19,000 noncanonical translated elements outside of the ~5,400 canonical yeast protein-coding genes. 18 

Most (65%) of these non-canonical translated elements were located on transcripts annotated as non-19 

coding, or entirely unannotated, while the remainder were located on the 5’ and 3’ ends of mRNA 20 

transcripts. Only 14 non-canonical translated elements were evolutionarily conserved. In stark contrast 21 

with canonical protein-coding genes, the great majority of the yeast noncanonical translatome appeared 22 

evolutionarily transient and showed no signatures of selection. Yet, we uncovered phenotypes for 53% 23 

of a representative subset of evolutionarily transient translated elements. The iRibo framework and 24 

reference translatome described here provide a foundation for further investigation of a largely 25 

unexplored, but biologically significant, evolutionarily transient translatome.  26 
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Introduction 28 

The central role played by protein-coding genes in biological processes has made their identification and 29 

characterization an essential project for understanding organismal biology. Over the past decade, the 30 

scope of this project has expanded as ribosome profiling (ribo-seq) studies have revealed pervasive 31 

translation of eukaryotic genomes.1,2 These experiments demonstrate that genomes encode not only 32 

the “canonical translatome”, consisting of the open reading frames (ORFs) identified as coding genes in 33 

genome databases like RefSeq3, but also a large “noncanonical translatome” consisting of coding ORFs 34 

that are not annotated as genes. Despite lack of annotation, large-scale studies find that many 35 

noncanonical ORFs (nORFs) show evidence of association with phenotypes.4–6 Additionally, a handful of 36 

previously unannotated coding sequences, identified by ribo-seq experiments, have now been 37 

characterized in depth, revealing that they play key roles in biological pathways and are important to 38 

organism fitness.7–10 Yet, these well-studied examples represent only a small fraction of the 39 

noncanonical translatome. Most noncanonical translation could simply be biologically insignificant 40 

“translational noise” resulting from the imperfect specificity of translation processes.11,12 Alternatively, 41 

thousands of missing protein-coding genes could be hidden in the noncanonical translatome.  42 

A common and powerful approach to identifying biologically significant genomic sequences is to look for 43 

evidence that the sequence is evolving under selection13–15. Many canonical genes were annotated on 44 

the basis of such evidence.16,17 However, in the case of noncanonical translation, this approach is often 45 

limited by a lack of sufficient statistical power to confidently detect selection. Many noncanonical 46 

translated ORFs are much shorter than canonical genes5, providing fewer informative variants to use for 47 

evolutionary inference. Short coding sequences are sometimes missed by genome-wide evolutionary 48 

analyses due to their short length despite long-term evolutionary conservation.9,18 Power limitations are 49 

even more severe for noncanonical ORFs that are evolutionarily novel, as a short evolutionary history 50 

also provides less information to distinguish selective from neutral evolution. Several de novo genes that 51 

evolved recently from noncoding sequences have been discovered from within the noncanonical 52 

translatome19,20.  53 

The challenges in identifying signatures of selection acting on short translated ORFs are compounded by 54 

difficulty in establishing unequivocal translation in the first place. Microproteins are often missed by 55 

most proteomics techniques, though specialized methods are being developped.21,22 In ribo-seq data, 56 

the most robust evidence of translation comes from a pattern of triplet periodicity in reads across an 57 

open reading frame (ORF) corresponding to the progression of the ribosome across codons.4,23,24 58 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 17, 2021. ; https://doi.org/10.1101/2021.07.17.452746doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452746


4 
 

Translation inference methods have less power to detect translation of short ORFs as they contain fewer 59 

positions to use to establish periodicity.25 The lower expression levels of some noncanonical ORFs 60 

further increases the difficulties in identification.19,26 Perhaps as a result of these power limitations, less 61 

than half of the noncanonical ORFs detected as translated in humans are reproducible across studies.27  62 

Here, we designed an approach to increase power in detection of both translation and selection among 63 

noncanonical ORFs. We address the challenges in detecting translation through the development of an 64 

integrative ribo-seq analysis framework (iRibo) that identifies signatures of translation with high 65 

sensitivity and high specificity even for sequences that are short or poorly expressed. We address the 66 

challenges in detecting selection through a comparative genomics framework that analyzes translated 67 

sequences collectively across evolutionary scales within- and between-species.  68 

We applied our approach to define a “reference translatome” for the model organism S. cerevisiae and 69 

to characterize the biological significance of noncanonical translated elements. Using iRibo, we 70 

identified ~19,000 noncanonical ORFs translated at high confidence and established the dependence of 71 

noncanonical translation on both genomic context and environment condition. Using genomic data at 72 

the population level within strains of S. cerevisiae and at the species level across the budding yeasts28,29,  73 

we identified a handful of undiscovered conserved genes within the yeast noncanonical translatome. 74 

However, the vast majority of the yeast noncanonical translatome consists of evolutionarily transient 75 

sequences evolving close to neutrally. Despite lacking signatures of selection, many transient ORFs were 76 

associated with phenotypes and cellular pathways. We thus conclude that much of the noncanonical 77 

translatome is composed of neither translational noise nor genes in the traditional sense, but rather a 78 

distinct class of short-lived coding sequences that play important biological roles.  79 

Results 80 

An integrative approach to defining the translatome 81 

iRibo consists of three components (Figure 1A; methods). First, reads from multiple ribo-seq 82 

experiments are pooled and mapped to the genome. Second, the translation status of each candidate 83 

ORF in the genome is assessed based on the periodicity of ribo-seq reads across the ORF. High-quality 84 

ribo-seq data provides single-nucleotide resolution such that reads map to the first position within 85 

codons of translated ORFs at much higher frequencies than to the other two positions, generating a 86 

pattern of triplet nucleotide periodicity corresponding to the progression of the ribosome codon-by-87 

codon across the transcript. iRibo calls ORFs as translated if they show significant evidence of triplet 88 
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periodicity in a binomial test. Finally, confidence in the list of ORFs called translated, the identified 89 

translatome, is evaluated using an empirical null distribution. A false discovery rate is estimated by 90 

assessing triplet periodicity on a dataset generated by shuffling the genomic location of ribo-seq reads 91 

across each ORF. iRibo thus defines the translatome with high sensitivity by leveraging the power of 92 

integrating multiple ribo-seq experiments, while high specificity is maintained by setting a desired false 93 

discovery rate. iRibo can be applied to a set of ribo-seq experiments conducted under a single 94 

environmental condition in order to precisely describe translation patterns under that condition. 95 

Alternatively, it can be deployed on a broader set of ribo-seq experiments conducted in many different 96 

contexts to construct a “reference translatome” consisting of all elements within a genome with 97 

sufficient evidence of translation.  98 
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Figure 1: The iRibo framework enables detection of thousands of noncanonical translated sequences. A) The iRibo 100 

framework: both canonical (cORF) and noncanonical (nORFs) are identified in the genome. Reads aggregated from published 101 

datasets are then mapped to these ORFs, with translation inferred from triplet periodicity of reads. B) Workflow to identify 102 

translated ORFs in the S. cerevisiae genome using published datasets. C) Mapped ribo-seq reads across an example nORF on 103 

chromosome II. The top five graphs correspond to the individual experiments with the most reads mapping to the ORF, while 104 

the bottom graph includes all reads in all experiments. Reads from many distinct experiments are necessary to identify the 105 

periodic pattern. D)  The number of nORFs found to be translated using the iRibo method at a range of p-value thresholds. 106 

Translation calls for a negative control set, constructed by scrambling the actual ribo-seq reads for each nORF, is also plotted. 107 

The dashed line signifies a false discovery rate of 5% among nORFs. E) The number of cORFs found to be translated using iRibo 108 

at a range of p-value thresholds, contrasted with negative controls constructed by scrambling the ribo-seq reads of each cORF.  109 

We applied iRibo to candidate ORFs across the S. cerevisiae genome (Figure 1B). The set of candidate 110 

ORFs was constructed by first collecting all genomic sequences at least three codons in length that start 111 

with ATG and end with a stop codon in the same frame. For ORFs overlapping in the same frame, only 112 

the longest ORF was kept. Each candidate ORF can be classified as canonical (cORF) if it is annotated as 113 

“verified,” “uncharacterized,” or “transposable element” in the Saccharomyces Genome Database (SGD) 114 

or as noncanonical (nORF) if it is annotated as “dubious,” “pseudogene,” or is unannotated. We 115 

excluded nORFs that overlap cORFs on the same strand. This process generated a list of 179,441 116 

candidate ORFs, of which 173,869 are nORFs and 5,572 cORFs. Translation status for candidate ORFs 117 

was assessed using data from 414 ribo-seq experiments across 42 studies, of which 270 experiments 118 

across 36 studies were kept after excluding experiments that did not show strong patterns of triplet 119 

periodicity among cORFs (Supplementary Table 1, Supplementary Table 2).  120 

As expected, combining data from many experiments allowed for identification of translated ORFs that 121 

would otherwise have too few reads in any individual experiment (Figure 1C). Setting a confidence 122 

threshold to ensure a 5% FDR among nORFs, we identified 18,954 nORFs (Figure 1D) as translated along 123 

with 5,363 cORFs (Figure 1E), for a total of 24,317 ORFs making up the yeast reference translatome. This 124 

corresponds to an identification rate of 96% for cORFs and 11% for nORFs (Figure 2A-B). In general, 125 

translated cORFs are much longer (Figure 2C) and translated at much higher rates (Figure 2D) than 126 

translated nORFs.  127 
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 128 

Figure 2: The noncanonical yeast translatome is larger than the canonical. A) The percent of ORFs in each Saccharomyces 129 

Genome Database annotation class that are detected as translated by iRibo, with canonical classes indicated in red and 130 

noncanonical in blue. B) The number of ORFs of each annotation class that are detected using iRibo. C) ORF length distribution 131 

for cORFs and nORFs. D) Distribution of translation rate (in-frame reads per base) for cORFs and nORFs. 132 

To assess the consistency of our ribo-seq datasets, we measured the replicability of translation patterns 133 

between studies. In general, ribo-seq coverage among ORFs was highly correlated among studies 134 

(Supplementary Figure 1A-B). To assess replicability in translation calls for nORFs, we applied iRibo to 135 
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each individual study and identified the nORFs that could be inferred to be translated using only the 136 

reads in that study. We then determined the proportion of translated nORFs found using each large 137 

study that were also found using the largest study, Gerashchenko et al. 201430 (Figure 3A). All studies 138 

had replication rates of at least 75%. These observations demonstrate that non-canonical translation 139 

patterns are highly reproducible, suggesting that they are driven by regulated biological processes 140 

rather than technical artifacts or stochastic ribosome errors. 141 

 142 

Figure 3: Translation patterns in noncanonical ORFs show high replicability between studies.  A) For six large studies in our 143 

dataset, the proportion of nORFs identified using reads from that study that are replicated using reads from the largest study, 144 

Gerashchenko et al. 2014, is indicated. Random expectation is the proportion that would be expected to replicate by chance. B) 145 

Relative enrichment of ribo-seq read counts in the first position of each codon with vs. without CHX treatment. C) Codon 146 

position of mapped ribo-seq reads in the no CHX condition among ORFs identified only in the CHX condition. A strong 147 

preference for the first codon, characteristic of translation, is observed.  148 

As usage of the translation inhibitor CHX to treat cells in ribo-seq studies has been widely discussed30–32 149 

as a factor influencing observed noncanonical translation patterns, we wished to specifically examine 150 

the consistency between studies in our dataset that differ in usage of this drug.  We thus compared 151 

translation signatures from experiments with (N=139) and without (N=170) CHX, randomly sampling the 152 

same number of reads from both groups. We found a large enrichment in ribo-seq read counts among 153 

nORFs with CHX treatment, resulting in more nORFs identified as translated (Figure 3B). However, 154 
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nORFs identified as translated only in CHX nevertheless displayed strong triplet periodicity in its absence 155 

when analyzed as a group (Figure 3C), indicating that they are translated under normal conditions.  156 

Noncanonical translation patterns depend on genomic and environmental context  157 

We examined to what extent translation of nORFs depends on genomic context. We classified nORFs as: 158 

upstream nORFs (uORFs) located on the 5’ untranslated regions of transcripts containing cORFs; 159 

downstream nORFs (dORFs) located on the 3’ untranslated regions of transcripts containing cORFs; 160 

intergenic nORFs that do not share transcripts with cORFs (independent), antisense nORFs located 161 

entirely within a cORF (full overlap), and antisense nORFs that overlap the boundaries of a cORF (partial 162 

overlap) (Figure 4A). Around 35% of identified translated nORFs, including 4,031 uORFs and 2,993 163 

dORFs, shared a transcript with a cORF, while 1.3% (268) were located on an annotated RNA gene 164 

(Figure 4B). The remaining 64% were located on transcripts that contain no annotated gene (5,958 165 

independent, 4,826 full overlap, 1,779 partial overlap). We compared the frequency at which nORFs 166 

were identified as translated relative to expectations based on candidate nORFs between different 167 

contexts (Figure 4C). Genome-wide, 23% of nORFs on the same transcript as a cORF were identified as 168 

translated, significantly higher than the translation frequency of 13% for independent nORFs (p<10-10, 169 

Fisher’s Exact Test). Consistent with prior research33, the relative position of the nORF on a transcript 170 

shared with a cORF affected likelihood of translation, with 28% of uORFs found to be translated 171 

compared to only 18% of dORFs (p<10-10, Fisher’s Exact Test). The nORFs in an antisense orientation to a 172 

cORF, and fully overlapping it, were translated at a frequency of 5%, the lowest of any context 173 

considered (p<10-10 for any comparison).  174 
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Figure 4: Noncanonical translation patterns depend on both genomic and environmental context. E) Potential genomic 176 

contexts for nORFs in relation to nearby canonical genes: on 5’ untranslated region (uORF), on 3’ untranslated region (dORF), 177 

intergenic nORFs that do not share transcripts with annotated genes (independent), antisense nORFs located entirely within an 178 

annotated gene (full overlap), and antisense ORFs that overlap the boundaries of an annotated gene (partial overlap). Also 179 

considered are nORFs that share a transcript with an RNA gene. B) Proportion of nORFs detected as translated by iRibo in each 180 

genomic context considered. For nORFs that share a transcript with RNA genes, the annotation of the RNA gene is specified. C) 181 

Counts of translated nORFs identified in each considered genomic context.  D) Number of translated nORFs identified for 182 

experiments on yeast grown in either minimal (SD) or rich media (YPD), at a range of read counts. E) Number of nORFs 183 

identified at high confidence either exclusively in rich media or minimal media (q-value <.001 in one condition and q-value >.05 184 

in the other) or found at high confidence in both conditions. 185 

We next investigated how environmental context affects noncanonical translation. To this aim, we 186 

leveraged the power of iRibo to construct separate datasets of nORFs found translated in rich media 187 

(YPD) or in nutrient-limited minimal media (SD) (Supplementary Table 3). Previous research had 188 

reported an increase in noncanonical translation in response to starvation.1,19 Consistent with these 189 

results, at equal read depths, more nORFs were identified as translated in minimal than in rich media  190 

(Figure 4D). Furthermore, 1,028 nORFs were found as translated with high confidence specifically in 191 

minimal media but showed no evidence of translation at all in rich media (q-value < .001 in SD; q-value 192 

>.05 in YPD), while only 348 nORFs were found translated specifically in rich media but showed no 193 

evidence of translation in minimal media (Figure 4E). These results confirm that nORF translation is 194 

regulated in response to changing environments.  195 

Two translatomes, transient and conserved 196 

To determine whether the proteins encoded by translated nORFs are being maintained by selection, we 197 

performed integrative comparative genomics analyses across three evolutionary scales. At the 198 

population level, we analyzed 1011 distinct S. cerevisiae isolates sequenced by Peter et al. 2018.28 At the 199 

species level, we compared S. cerevisiae ORFs to their orthologs in the Saccharomyces genus, a taxon 200 

consisting of S. cerevisiae and its close relatives34. To detect long term conservation, we looked for 201 

homologs of S. cerevisae ORFs among the 332 budding yeast genomes (excluding Saccharomyces) 202 

collected by Shen et al29. The power to detect selection on an ORF depends on the amount of genetic 203 

variation in the ORF available for evolutionary inference, which in turn depends on its length, the 204 

density of genetic variants across its length, and the number of genomes available for comparison. Given 205 

that many translated nORFs are very short (Figure 2C), we employed a two-stage strategy to increase 206 

power for detecting signatures of selection. First, we investigated selection in a set of “high information” 207 

ORFs for which we have sufficient statistical power to potentially detect selection. Second, we 208 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 17, 2021. ; https://doi.org/10.1101/2021.07.17.452746doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452746


13 
 

investigated the remaining “low information” ORFs in groups to quantify collective evidence of selection 209 

(Figure 5A). Group level analysis increases power to detect the presence of selection but does not 210 

enable identification of the specific ORFs under selection. The “high information” set consisted of the 211 

ORFs that 1) have identified orthologs in at least four other Saccharomyces species and 2) have a 212 

median count of nucleotide differences between the S. cerevisiae ORF and its orthologs of at least 20. 213 

We found these criteria are sufficient to distinguish ORFs evolving under selection (Supplementary 214 

Figure 2). Under this definition, 9,453 translated ORFs that do not overlap cORFs (henceforth 215 

“nonoverlapping ORFs”, including 4,223 nORFs, and 5,230 cORFs) and 3,063 antisense ORFs (3,003 216 

nORFs and 60 cORFs) were placed in the “high information” set. 217 

To detect selection in the high information set, we first used reading frame conservation (RFC), a 218 

sensitive approach developed by Kellis et al. 200313 to distinguish ORFs under selection from ORFs that 219 

exist by happenstance in the yeast genome. RFC ranges from 0 to 1, measuring codon structure 220 

conservation between an S. cerevisae ORF and potential orthologs in the Saccharomyces genus. We 221 

found a bimodal distribution of RFC among nonoverlapping ORFs in the yeast translatome: 53.7% have 222 

RFC above 0.8 and 44.4% have RFC less than 0.6, with only 1.9% of ORFs intermediate between these 223 

values (Figure 5B). The modes of the distribution largely correspond to annotation status, with 96.4% of 224 

cORFs having RFC > 0.8 and 96.8% of nORFs falling in RFC < 0.6 category. This bimodal distribution of RFC 225 

among translated ORFs was similar to that observed among all candidate ORFs in the yeast genome.13 226 

High RFC among antisense ORFs does not demonstrate selection on the ORF itself, as it might be caused 227 

by selective constraints on the opposite-strand gene, but low RFC still indicates lack of conservation. A 228 

majority of antisense translated nORFs (65%) have RFC <0.6, indicating that most are not preserved by 229 

selection (Supplementary Figure 3).  230 

In light of the general correspondence between annotation and conservation, the exceptions are of 231 

interest: 126 cORFs (111 nonoverlappping and 15 antisense) showed poor conservation and therefore 232 

might not be evolving under purifying selection, while 13 nonoverlapping nORFs had preserved ORF 233 

structure and are thus potentially evolving under purifying selection.  Several lines of evidence suggest 234 

that these preserved nORFs are indeed evolving under purifying selection (Table 2). For nine of the 235 

thirteen, we identified a BLASTP or TBLASTN match among 332 budding yeast genomes29 (excluding 236 

Saccharomyces genus species), suggesting conservation over long evolutionary time. Two ORFs showed 237 

evidence of selection in a pN/pS analysis performed on 1011 S. cerevisiae isolates28, and three others 238 

showed evidence of selection by dN/dS performed on the Saccharomyces genus species (Table 2). We 239 
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sought to determine whether selection could be inferred for any additional nORFs on the basis of long-240 

term evolutionary conservation. We searched for distant homologs of translated nonoverlapping S. 241 

cerevisiae nORFs using TBLASTN within budding yeast genomes outside the Saccharomyces genus29. 242 

After excluding matches that appeared non-genic (Supplementary Figure 4A-B, Supplementary Table 4) 243 

we identified a single additional ORF with both distant TBLASTN matches and recent signatures of 244 

purifying selection: YBR012C, annotated as “dubious” on SGD (Table 2). Thus, combining the 13 nORFs 245 

that appeared conserved by RFC analysis and the single additional ORF with signatures of long-term 246 

conservation by TBLASTN, we identified 14 translated nORFs that show evidence of preservation by 247 

selection (Table 2). 248 

Table 2: Properties of well-conserved nORFs 249 

Systematic 
Name 

Coordinates BLASTP e-
value 

TBLASTN e-
value 

RFC Length 
(nt) 

pN/pS (p-
value) 

dN/dS (p-value) Translation 
percentile 

YBL029W-B chrII:164192-164368 6.8 x 10-4 8.0 x 10-3 0.82 177 1.65 (.33) 0.88 (.68) 0.67 

YBL014W-A chrII:196737-196889 4.3 x 10-5 1.0 x 10-4 1 153 0.47 (.11) 0.14 (3.46 x 10-12) 0.86 

YBR085W-B chrII:417494-417556 1 1 0.86 63 0.72 (.48) 1.26 (.62) 0.58 

YBR268W-A chrII:741844-742005 1 1 0.99 162 0.61 (.15) 0.35 (3.18 x 10-7) 0.97 

YBR292W-A chrII:786745-786903 1.9 x 10-7 5.0 x 10-3 0.96 159 0.72 (.43) 0.57 (.0026) 0.83 

YER186W-A chrV:565603-565800 6.2 x 10-6 1 0.92 198 0.55 (.02) 1.0 (1) 0.97 

YGL262W-A chrVII:4663-4872 1 1.0 x 10-3 0.88 210 0.96 (.86) 1.0 (1) 0.86 

YGR238W-A chrVII:969015-
969089 

1 1 0.87 75 0.20 (.01) 1.18 (.74) 0.94 

YBL049C-A chrII:126330-126461 8.7 x 10-5 6.0 x 10-4 0.84 132 1.36 (.79) 1.5 (.22) 0.75 

YBL026C-A chrII:169634-169870 7.0 x 10-12 9.0 x 10-10 0.88 237 1.30 (.6) 0.87 (.42) 0.9996 

YJR107C-A chrX:628457-628693 3.9 x 10-8 3.0 x 10-18 0.99 237 0.39 (.005) 1.42 (.13) 0.9991 

YLR349C-A chrXII:828276-
828338 

1 1 0.81 63 0.30 (.02) 0.73 (.24) 0.73 

YNR062C-A chrXIV:745640-
745792 

5.2 x 10-14 5.0 x 10-13 0.89 153 0.65 (.44) 1.49 (.15) 0.44 

YBR012C chrII:259147-259566 6.51 x 10-59 1x10-16 .70 420 .62 (.1) .50 (.039) 0.92 

 250 

To obtain power for analyzing selection among “low information” ORFs, including 8,062 nonoverlapping 251 

nORFs and 21 cORFs (8,695 low information antisense ORFs were not analyzed), we analyzed collective 252 

evidence of selection within specified groups of ORFs. These groups were constructed as deciles of 253 

properties that we expected to be potentially associated with selection. The properties considered were 254 

genomic context, rate of translation (as measured by ribo-seq reads mapped to the first position within 255 

codons), ORF length, and coding score35,36. For each group, we calculated pN/pS ratio among 1,011 S. 256 

cerevisiae isolates28. Low-information cORFs showed pN/pS ratio significantly below 1, indicating that 257 
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some ORFs in the group are evolving under purifying selection (Figure 5C). In contrast, for all groups of 258 

nORFs examined, we observed no significant deviations from neutral expectations in pN/pS (Figure 5C). 259 

To assess whether each group showed collective evidence of distant homology that could not be 260 

established at the individual level with confidence, we also calculated the frequency of weak TBLASTN 261 

matches (e-values between 10-4 and .05). The frequency of weak matches was compared to a negative 262 

control set consisting of scrambled sequences of the ORFs in each group. Applying this strategy to cORFs 263 

lacking strong matches, we found a large excess of weak matches relative to controls (Figure 5D), 264 

demonstrating the ability of this approach to detect faint signals of homology within a group of ORFs. 265 

However, we identified no significant difference in the frequency of weak TBLASTN hits between any 266 

nORF group and scrambled controls (Figure 5E). The lack of a significant result does not exclude the 267 

possibility that a small subset of short conserved nORFs could be lost in the noise of a much larger set of 268 

nORFs evolving close to neutrally. However, these analyses indicate that ORFs evolving under strong 269 

purifying selection are not a major component of the yeast noncanonical translatome.  270 

Overall, our analyses distinguish two distinct yeast translatomes: a conserved, mostly canonical 271 

translatome with intact ORFs preserved by selection; and a mostly noncanonical translatome where 272 

ORFs are not preserved over evolutionary time. This distinction is rooted in evolutionary evidence rather 273 

than annotation history. We thus propose to group the translated ORFs that showed no evidence of 274 

selection in either our high-information or low-information set as the “transient translatome”. The 275 

transient translatome includes the 4088 nonoverlapping and 1948 antisense nORFs identified as not 276 

preserved by selection using RFC analyses, along with 90 nonoverlapping and 15 antisense cORFs 277 

matching the same criteria. Also included are all 8041 nonoverlapping nORFs that lack sufficient 278 

information to analyze at the individual level but were found to show no selective signal in group-level 279 

analyses. Together, this set of 14,203 ORFs that are translated yet evolutionarily transient makes up 58% 280 

of the yeast reference translatome (Figure 5F).     281 
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 282 

Figure 5: Two distinct translatomes: transient and conserved. A) Selection inference analyses conducted on low-information 283 

and high-information nORFs. B) The distribution of reading frame conservation among high information ORFs, separated 284 

between noncanonical and (stacked above) canonical. Dashed lines separate RFC < 0.6 and RFC > 0.8, the thresholds use to 285 

distinguish ORFs preserved or not preserved by selection. C) pN/pS values are shown for each group of low-information nORFs, 286 

representing a decile of translation rate (in-frame ribo-seq reads per base), coding score, or ORF length, as well as ORFs in 287 

different genomic contexts. Note that pN/pS values are not averages among ORFs but a ratio reflecting the number of 288 

synonymous and nonsynonymous variants pooled over the entire class. Error bars indicate standard errors estimated from 289 

bootstrapping. D) The frequency of weak TBLASTN matches (10-4 < e-value < .05) among budding yeast genomes for cORFs that 290 

lack any strong matches, and controls consisting of the same sequences randomly scrambled. Error bars indicate standard 291 

errors estimated from bootstrapping. E) The frequency of nORFs with weak TBLASTN matches (10-4 < e-value < .05) in each 292 

group of nORFs (dark bars) and negative controls (light bars) consisting of the sequences of the nORFs of each group randomly 293 

scrambled. Error bars indicate standard errors estimated from bootstrapping. F) The components of the translatome are 294 

represented with area proportional to frequency.  295 

Most annotated transient ORFs appear biologically significant 296 

We have identified a large collection of nORFs that show strong evidence of translation but appear to be 297 

evolutionarily transient and have no clear evolutionary signature of selection (Figure 5A-C). By general 298 

theory and practice in evolutionary genomics, the lack of any selective signal suggests that the 299 
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noncanonical transient translatome does not meaningfully contribute to fitness. Surprisingly, however, 300 

105 cORFs also belong to the transient set. If lack of selective signal implies lack of function, why are 301 

these ORFs classified as canonical genes? To better understand the potential roles of these ORFs, we 302 

examined what has been discovered about each transient cORFs in the S. cerevisiae experimental 303 

literature. 304 

While most transient cORFs are not well-characterized, five have been studied in depth. Two of these, 305 

MDF137 and YBR196C-A38, have been previously discussed as apparent de novo genes; the remaining 306 

three have been characterized, but their evolutionary properties were not analyzed in the 307 

corresponding studies. HUR1 plays an important role in non-homologous end-joining repair and its 308 

encoded polypeptide physically interacts with conserved proteins39. Both deletion and overexpression 309 

mutants of YPR096C indicate that it regulates translation of PGM2.40 A thorough investigation of ICS3 310 

mutants demonstrates its involvement in copper homeostasis41. These cases indicate the potential for 311 

evolutionarily transient ORFs to play important biological roles. For transient cORFs with no described 312 

role, we examined all literature listed as associated with the ORF on SGD. Many of these transient cORFs 313 

are supported by direct evidence of phenotype (Supplementary Table 5). Of particular interest are the 314 

98 transient cORFs with null mutants included in the yeast deletion collection.42 Of these cORFs, 35 315 

(36%) were associated with phenotypes in at least one screen using the collection. An additional 10 316 

transient ORFs were reported to have null mutant phenotypes in other screens, and 11 to have 317 

overexpression phenotypes. Overall, we found phenotypes reported in the literature for 51 of 105 318 

transient cORFs (49%).  319 

In addition to the set of transient cORFs, 144 transient nORFs are annotated as “dubious” on SGD. 320 

Though considered unlikely to encode a protein in the current version of the genome annotation, these 321 

ORFs have nevertheless been investigated in various studies. To further determine the potential for 322 

biological activity in transient nORFs and cORFs, we assessed whether each expressed a stable protein 323 

that can be detected in the cell. Fifty transient cORFs were identified among 21 yeast quantification 324 

studies assembled by Ho et al. 201843. We examined two microscopy datasets for additional evidence, 325 

the CYCLoPs database of GFP-tagged proteins44 and the C-SWAT tagging library developed by Meurer et 326 

al. 201845. Both of these datasets attempted to localize proteins expressed from their native promoters. 327 

Together, the CYCLoPs and C-SWAT libraries identified 26 of 36 (72%) transient “dubious” nORFs 328 

examined and 71 of 88 (81%) transient cORFs (Figure 6A). These results indicate that a majority of the 329 
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proteins coded by transient nORFs and cORFs exist stably within the cell and have the potential to affect 330 

phenotypes. 331 

Next, we sought to determine how many annotated transient ORFs can affect fitness. To this aim, we 332 

leveraged the large yeast genetic interaction network assembled in Costanzo et al. 2016.46 This dataset 333 

includes 81 transient cORFs and 13 “dubious” transient nORFs. Deletion strains for these 94 transient 334 

ORFs exhibited an average fitness of 0.99, not significantly different from the wildtype fitness of 1.0 335 

(p=0.06, t-test) (Figure 6B). However, despite the lack of substantial single-mutant effects, most 336 

transient ORFs participated in strong negative genetic interactions. Out of the 94 transient ORFs in the 337 

dataset, 89 (95%) have at least one negative interaction strength at Ɛ<-0.2 and p-value<0.05 (described 338 

as a high-stringency cut-off by Costanzo et al.) and 63 (67%) have negative interactions with Ɛ<-0.35, the 339 

threshold for synthetic lethality in Costanzo et al.46 (Figure 6C). This was only a slightly lower rate than 340 

for conserved non-essential ORFs, 98% of which had interactions with Ɛ<-0.2 and p-value <0.05 341 

(p=0.047, Fisher’s exact test), and 77% of which had interactions with Ɛ<-.35 (p=0.026, Fisher’s exact 342 

test).  To further investigate these interactions, we performed GO enrichment analyses on the genetic 343 

interactors of each transient ORF. At an Ɛ< -0.2 threshold, 27 transient ORFs were found to interact with 344 

groups of related genes enriched in specific GO terms (5% FDR; Supplementary Table 6).  For example, 345 

the interactors of YER175W-A are associated with the GO category “cryptic unstable transcript (CUT) 346 

metabolic processes” with high confidence, and five of its eleven interactors are components or co-347 

factors of the exosome (Figure 6D), indicating likely involvement in CUT degradation or a closely related 348 

pathway. The GO associations demonstrate biologically coherent knockout phenotypes for many 349 

transient ORFs.  350 

Overall, we uncovered evidence that 131 of 249 (53%) annotated transient ORFs have at least one 351 

indicator of biological significance (detection of a protein product, a reported phenotype in a screen, or 352 

a genetic interaction in the Costanzo et al. 201646 network) (Figure 6E). This is likely an underestimate 353 

due to study bias. For example, many “dubious” ORFs have been excluded from the gene mutant 354 

libraries that are used in genetic screens and localization studies.    355 
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 356 

Figure 6: Many annotated transient ORFs have phenotypes indicative of biological roles. A) Proportion of proteins expressed 357 

by transient ORFs detected in either the CSWAP or CYCLoPS tagging libraries out of those tested. B) Histogram of single deletion 358 

mutant fitness among transient ORFs. The fitness distribution of nonessential genes is plotted in red for comparison. C) The 359 

percent of transient ORFs and nonessential genes with at least one genetic interaction at a given threshold. E)  Genetic 360 

interactions of the transient ORF YER175W-A. Five interactors are related to exosome.  F) Presence of phenotypes among all 361 

annotated transient ORFs. “Protein detected” indicates that the ORF product was found in either the CSWAP or CYCLoPS 362 

database.  Phenotypes of deletion collection, null and overexpression screens were taken from reported findings in the yeast 363 

experimental literature and are described in Supplemental Table 5. “Genetic interaction” indicates a statistically significant 364 

genetic interaction with Ɛ< -0.2, and “GO-associated interactors” indicates a GO enrichment was found among significant 365 

interactors at 5% FDR. 366 

Transient annotated ORFs appear to be representative of the transient translatome overall 367 

We sought to determine whether the level of biological significance observed for the annotated subset 368 

of the transient translatome could be representative of the transient translatome as a whole. To this 369 

aim, we compared the evolutionary properties, translation rate and coding scores of transient cORFs, 370 

transient “dubious” nORFs and transient unannotated nORFs.  No class of transient ORF showed a pN/pS 371 

ratio different from one or from untranslated negative controls (Figure 7A), consistent with neutral 372 

evolution. Similarly, the average nucleotide diversity within each transient subset was not significantly 373 

different than untranslated controls, and much higher than conserved genes (Figure 7B). Frame 374 

conservation with S. paradoxus also showed no difference from the controls (Figure 7C). In addition, no 375 
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class of transient ORFs showed differences in their rate of translation (Figure 7D) or coding score (Figure 376 

7E). The only distinguishing property between annotated and unannotated transient ORFs was their 377 

length. Both transient cORFs and “dubious” nORFs are much longer on average than unannotated 378 

transient nORFS (Figure 7F). This is a consequence of the history of annotation of the S. cerevisiae 379 

genome, where a length threshold of 300 nt was set for annotation of unknown ORFs47,48. The sharp 300 380 

nt threshold is still clearly reflected in annotations. For example, genome annotations include 96% of 381 

nonoverlapping transient ORFs in the 300-400 nt range (55/57), but only 4% in the 252-297 nt range 382 

(4/101). This cutoff was not set due to a belief that shorter ORFs could not be biologically relevant—118 383 

ORFs annotated as “verified” on SGD are shorter than 300 bp—but due to difficulty in distinguishing 384 

potentially significant ORFs from those arising by chance.49 Thus, given that 300 bp does not represent a 385 

threshold for biological significance, and transient unannotated ORFs resemble transient  cORFs in all 386 

other respects, numerous never-studied transient nORFs likely also play a variety of biological roles. 387 

   388 
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 389 

Figure 7: Canonical and noncanonical transient ORFs have similar properties. A-G) Properties of nonoverlapping transient 390 
cORFs and nORFs. Untranslated controls consist of nonoverlapping ORFs that would be grouped in the transient class (RFC <.6) 391 
but are not inferred to be translated based on ribo-seq evidence. Conserved cORFs are nonoverlapping cORFs with distant 392 
homologs and high RFC (>.8). P-value<.05:*. P-value<.01:**. P-value <.001: ***.  A) pN/pS values for each group among S. 393 
cerevisiae strains. B) Average nucleotide diversity (π) among each group. C) Average reading frame conservation between S. 394 
cerevisiae and S. paradoxus ORFs. D) Average ribo-seq reads per base, considering only in-frame reads. E) Coding scores are 395 
plotted for ORFs of each group. F) ORF lengths in nucleotides are shown for ORFs of each group. 396 

Discussion 397 

Since the advent of ribosome profiling, it has been evident that large parts of eukaryotic genomes are 398 

translated outside of canonical protein-coding genes1, but the nature and full significance of this 399 

translation has remained elusive. To facilitate study of this noncanonical translatome, we developed 400 

iRibo, a framework for integrating ribosome profiling data from a multitude of experiments in order to 401 

sensitively detect ORF translation across a variety of environmental conditions. Here, we demonstrate 402 
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that iRibo is able to identify a high confidence yeast reference translatome almost five times larger than 403 

the canonical translatome. This resource can serve as the basis for further investigations into the yeast 404 

noncanonical translatome, including the prioritization of nORFs for experimental study. 405 

We used the iRibo dataset to address a fundamental question about the yeast noncanonical 406 

translatome: to what extent does it consist of conserved coding sequences that were missed in prior 407 

annotation attempts? In a thorough evolutionary investigation, we identified 14 translated nORFs that 408 

show evidence of being conserved under purifying selection. Only one of these ORFs, YJR107C-A, 409 

appears to have been previously described22, though it is not annotated on Saccharomyces Genome 410 

Database. Thus, even a genome as well-studied as S. cerevisiae contains undiscovered conserved genes, 411 

likely missed in prior analyses due to difficulties in analyzing ORFs of short length. These 14 nORFs are, 412 

however, the exception: the great majority of translated nORF show no signatures of selection 413 

whatsoever, comprising a large pool of evolutionarily transient translated sequences.  414 

We identified and analyzed a collection of transient annotated ORFs to get a sense of the potential roles 415 

played by the much larger set of transient unannoated ORFs. Despite lacking evidence of selection, 416 

annotated transient ORFs expressed stable proteins and contributed to cellular processes and 417 

phenotypes. These annotated ORFs were representative of the transient translatome as a whole besides 418 

being longer on overage, but this difference stems from a decision made early in the annotation of the 419 

yeast genome not to annotate most ORFs shorter than 100 codons.47 As this annotation choice was 420 

based only on length and not direct evidence of phenotype, it does not serve as evidence that shorter 421 

transient ORFs lack phenotypes observed in larger transient ORFs. Indeed, research on microproteins 422 

show clearly that sequences shorter than 100 codons are often biologically important.5,50  423 

It is perhaps surprising that a coding sequence can affect organism phenotype despite showing no 424 

evidence of selection. However, this result is consistent with evidence from the field of de novo gene 425 

birth. Species-specific coding sequences have been characterized in numerous species20. Xie et al. 201951 426 

identify a mouse protein contributing to reproductive success that experienced no evident period of 427 

adaptive evolution. Sequences that contribute to phenotype without conservation have also been 428 

described outside of coding sequences. Many regulatory sequences, such as transcription factor binding 429 

sites, are a mix of relatively well-conserved elements and elements that are not preserved even 430 

between close species;52 it is thus plausible that translated sequences also show such a division. These 431 

findings do not imply an absence of selective forces in shaping the patterns of noncanonical translation. 432 
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Rather, the particular selective environment favoring expression of these sequences may be too short-433 

lived to detect selection using traditional comparative genomics approaches.  434 

Our results indicate that the yeast noncanonical translatome is neither a major reservoir of conserved 435 

genes missed by annotation, nor mere “translational noise.” Instead, many translated nORFs are 436 

evolutionarily novel and likely affect the biology, fitness and phenotype of the organism through 437 

species-specific molecular mechanisms. As transient ORFs differ greatly in their evolutionary and 438 

sequence properties from conserved ORFs, they should be understood as representing a distinct class of 439 

coding element from most canonical genes. Nevertheless, as with conserved genes, understanding the 440 

biology of transient ORFs is necessary for understanding the relationship between genotype and 441 

phenotypes. 442 

Supplementary Figures 443 

 444 

Supplementary Figure 1: Translation patterns in candidate ORFs show high replicability between studies. A) Pairwise 445 

correlation between ribo-seq coverage of all candidate ORFs between studies included in dataset. The set of 27 studies at the 446 

bottom left show high correlation among each other, while other studies show more distinct translation patterns. B) For each 447 

candidate ORF, the reads per base (considering only in-frame reads) are plotted for the two largest studies in our dataset.  448 
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 449 

Supplementary Figure 2: Nucleotide variation determines ability to distinguish conserved ORFs. Reading frame conservation 450 
for each nonoverlapping ORF is plotted against the median count of differences between the S. cerevisiae ORF and the aligned 451 
homologous sequence in each Saccharomyces relative. Colors indicate SGD annotation categories. The dashed lines separate 452 
distinct groups: to the right of the vertical line, there are two distinct populations divided by reading frame conservation, along 453 
with an intermediate region with few ORFs. For ORFs to the left of the vertical line, with few differences between species, there 454 
is no clear distinction between high-RFC and low-RFC populations 455 

 456 

 457 
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 458 

Supplementary Figure 3: Distribution of frame conservation among anti-sense ORFs. The distribution of frame conservation is 459 
plotted for translated cORFs and nORFs that are antisense to canonical genes, with canonical stacked atop noncanonical. In 460 
contrast to frame conservation among nonoverlapping ORFs, the distribution does not appear bimodal.  461 
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 462 

Supplementary Figure 4: Identification of conserved genes in the noncanonical translatome using TBLASTN. A) Process for 463 
identification of conserved nORFs evolving under purifying selection. Starting with the full list of nORFs, nORFs identified as 464 
conserved by RFC analysis are excluded, as these are already described in Table 2. The remaining nORFs with TBLASTN matches 465 
are divided into those only a single match among all compared species and those with at least two matches. Single matches 466 
were excluded, as these could be a result of contamination of genome sequencing data. The properties of the nORFs with 467 
multiple distant identified homologs were then examined for additional evidence of purifying selection (Supplementary Table 468 
3). B) Among translated S. cerevisiae ORFs with a single TBLASTN hit among budding yeasts outside the Saccharomyces genus, 469 
the distribution of sequence identities with that match is plotted. The existence of only a single match together with the 470 
prevalence of high sequence identities (>80%) suggests that the matches may be the result of genomic contamination rather 471 
than genuine homology. 472 

Methods 473 

Yeast ribo-seq dataset collection and read mapping 474 

We identified a list of S. cerevisiae ribosome profiling (ribo-seq) studies by conducting a broad literature 475 

search. For each study, all ribo-seq experiments were added to our dataset except those conducted on 476 

mutants designed to alter wildtype translation patterns. The full list of experiments and studies included 477 

is given in Supplementary Tables 1 and 2, respectively. The fastq files associated with each experiment 478 

were downloaded from Sequence Read Archive53 or the European Nucleotide Archive18. Reads were 479 

filtered to exclude reads in which any base had a Phred score below 20. For each remaining read, the 480 

number of perfect matches in the S. cerevisiae genome were identified, and only unique perfect 481 

matches were kept. 482 
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It was next necessary to remap the reads such that the position assigned to the read corresponded to 483 

the P-site of the translating ribosome, as in previous ribo-seq analyses.23 The aim of remapping is to shift 484 

all read positions such that the triplet periodic signal indicative of active translation overlaps precisely 485 

the translated ORF, with the first position of each codon being the highest point of the period. To 486 

accomplish this, reads in each experiment were grouped by read length. For each set of reads of a given 487 

length, we then counted the number of reads in each of the -50 to +50 positions relative to the start 488 

codon accumulated over all annotated genes on Saccharomyces Genome Database (SGD)54. The 489 

appropriate reading frame to map to is the one with the highest total read count. Within that frame, the 490 

start of translation can be identified using the knowledge that there are more reads on the translating 491 

ORF than the preceding region. We inferred that the first position in the correct frame with at least 5% 492 

of the total reads in the -50 to +50 region corresponds to the location of the p-site of the ribosome 493 

translating the start codon. All reads of the given read length were then offset such that this P-site 494 

matched the first position of the start codon. 495 

For each read length in each experiment, we then tested whether the reads showed a pattern of strong 496 

triplet periodicity that would enable robust translation inference. We counted the number of reads 497 

mapping (after P-site remapping) to the first, second, and third position of each codon among annotated 498 

genes, requiring at least twice as many reads in the first position than each of the second and third. If a 499 

read length failed this test it was excluded from further analysis, and if all read lengths for an 500 

experiment failed the experiment itself was excluded. All read lengths from 25 to 35 nucleotides were 501 

tested. 502 

Defining Candidate ORFs 503 

To identify a set of translated ORFs, we first constructed a set of candidate ORFs for which translation 504 

status could be inferred using ribo-seq data. ORFs were identified on the R64.2.1 genome downloaded 505 

from SGD. The initial set of candidates consisted of all possible single-exon reading frames starting with 506 

an ATG and ending with a canonical start codon. Among all ORFs that shared a stop codon, all but the 507 

longest were discarded. All ORFs that overlapped a canonical gene (annotated as “verified”, 508 

“uncharacterized” or “transposable element gene” on SGD) on the same strand were also discarded 509 

(including pairs of overlapping canonical genes) unless the ORF shared a stop codon with the canonical 510 

gene and the canonical gene was single-exon. An ORF with the same stop codon as an annotated gene 511 

on SGD was considered to be that gene. 512 
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Translation Calling 513 

In our full dataset of translated ORFs, translation was inferred using ribo-seq data from all experiments 514 

that showed robust triplet periodicity among annotated genes (Supplementary Table 3). We also 515 

generated lists of translated ORFs based only on experiments with or without the drug cycloheximide, 516 

only on cells grown in YPD, only on cells grown on SD, and only on cells grown in YPD without 517 

cycloheximide (Supplementary Table 3). In each case, mapped reads from all eligible experiments were 518 

combined into a common pool. 519 

Translation was assessed as follows: for each codon in each candidate ORF, the position within the 520 

codon with the most reads was noted, if any. The number of times each codon position had the highest 521 

read count across the ORF was then counted. We then used the binomial test to calculate a p-value for 522 

the null hypothesis that all positions were equally likely, against the alternative that the first position 523 

was favored. This p-value is an indicator of the strength of evidence for triplet periodicity favoring the 524 

first codon position. 525 

To estimate the false positive rate (FDR), we constructed a set of ORFs corresponding to the null 526 

hypothesis. For each ORF, we scrambled the ribo-seq reads randomly position by position (not read by 527 

read); e.g., if 10 reads mapped to the first base on the actual ORF, a random position in the scrambled 528 

ORF was assigned 10 reads, and so on. In this way the read distribution across positions was maintained 529 

but the spatial structure was eliminated. We then used the same binomial test on all scrambled ORFs. 530 

For every p-value threshold, the FDR can then be calculated as the number of scrambled ORFs with p-531 

value below the threshold divided by the number of actual ORFs with p-values below the threshold. For 532 

each list of translated ORFs, the p-value threshold was set to give a 5% FDR among noncanonical ORFs; 533 

all ORFs below this threshold were then included in the translated set whether canonical or 534 

noncanonical. 535 

Estimating translation rates across different genomic contexts 536 

We assessed the frequency at which nORFs were found to be translated in different genomic contexts, 537 

defined by the relation between the nORF and any cORF (ORFs annotated as “verified” or 538 

“uncharacterized” on SGD) located on the same transcript, if any. For this analysis, transcripts were 539 

taken from the analysis of TIF-seq data in Pelachano et al.55 An nORF was considered to share a 540 

transcript with a cORF f any transcript fully contained both ORFs ; the ORF was then further classified as 541 

being in either a uORF or dORF context based on whether it was upstream or downstream of the gene. 542 
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Noncanonical ORFs were classified as antisense to a noncanonical gene is they had any overlap on the 543 

opposite strand. 544 

Identifying homologous sequences of the S. cerevisiae ORF in other Saccharomyces genus species 545 

We obtained genomes and genome annotations from seven relatives of S. cerevisiae within the  546 

Saccharomyces genus: S. paradoxus from Liti et al. 200956, S. arboricolus from Liti et al. 201357, S. jurei 547 

from Naseeb et al. 201858,  and S. mikatae, S. bayanus var. uvarum, S. bayanus var. bayanus, and S. 548 

kudriavzevii from Scannell et al. 2011.34   549 

Syntenic blocks were constructed between the S. cerevisiae genome and the genome of each 550 

Saccharomyces relative in the following manner: for each gene G0 in S. cerevisiae that had an annotated 551 

homolog in a given relative, the closest downstream gene G1 was identified such that, in the relative, a 552 

homolog of G1 was within 60 kb of a homolog of G0. The sequence between and including the homologs 553 

of G0 and G1 were then extracted from the species and an alignment of the syntenic region was 554 

generated using MUSCLE 3.8.31.59 555 

To confirm that the ORF was matched to a genuine homolog, we extracted the alignment of the S. 556 

cerevisiae ORF itself along with a 50 bp flanking region on both ends from the full syntenic alignment. 557 

We then realigned this extracted region using the Smith-Waterman algorithm with a match bonus of 5, a 558 

mismatch penalty of 4, and a gap penalty of 4. We ran 1000 alignments using the same score system in 559 

which the sequence of the comparison species was shuffled at random, reflecting a null hypothesis that 560 

the region was not homologous. The proportion of times the alignment of the real sequence scored 561 

better than the shuffled ones is a p-value indicating the strength of the null hypothesis against the 562 

alternative that the region is homologous. We considered homology confirmed if the p-value was less 563 

than 1%.  564 

If a syntenic alignment could not be constructed or if homology of the ORF was not confirmed, we 565 

attempted to find the homologous ORF by BLAST as an alternative to the synteny approach. We 566 

performed BLASTn on all S. cerevisiae single-exon ORFs against all single-exon ORFs in the comparison 567 

species. For each reciprocal best matching pair with e-value < 10-4, we took the sequences of the ORFs in 568 

both species, together with a 1000 bp flanking region in both ends, and aligned this in the same manner 569 

as the syntenic blocks. We then attempted to confirm homology using Smith-Waterman alignment as 570 

described above. As BLAST-based alignments offer less confidence than syntenic alignments, we marked 571 

all ORFs for which a homolog could be found only using BLAST (Supplementary Table 3). 572 
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Reading frame conservation 573 

Reading frame conservation is a measure of conservation of codon structure developed by Kellis et al.13 574 

and used here with some variations. We begin with a pairwise alignment of a genomic region (either a 575 

syntenic block or the area around a BLAST hit) containing the S. cerevisiae ORF. We identify all ORFs 576 

(ATG to stop) in the comparison species across this region. For each ORF in the comparison species, the 577 

reading frame conservation is calculated by summing up all points in the alignment where the pair of 578 

aligned bases are in the same position within the codon (i.e., both are in either the first, second, or third 579 

position) and dividing by the length of the S. cerevisiae ORF in nucleotides. The ORF in the comparison 580 

species with the highest reading frame conservation is considered the best match, and the reading 581 

frame conservation of the S. cerevisiae ORF in relation to each other Saccharomyces species is defined 582 

as its reading frame conservation with its best match. In addition to the pairwise reading frame 583 

conservation of each S. cerevisiae ORF in relation to its homologs in all other species, we defined an 584 

index of reading frame conservation equal to the average reading frame conservation of the S. 585 

cerevisiae ORF against all species in the Saccharomyces genus. 586 

Analysis of population data 587 

Variant call file data for 101 S. cerevisiae isolates was taken from Peter et al.28 For every ORF, we 588 

considered only isolates for which every position in the ORF was called in calculating nucleotide diversity 589 

and pN/pS ratios. To calculate pN/pS ratios, we first obtained expected variant frequencies for each 590 

possible majority allele (A, C, G, T) by counting the frequency of minor variants of each type at positions 591 

with that majority allele across the entire genome that does not overlap annotated coding sequence. 592 

This provides an expected frequency of nonsynonymous and synonymous variants for a given ORF open 593 

reading frame that can be obtained by summing the expected variant frequencies across each position 594 

in the ORF, as determined by its majority variant. These frequencies were then converted into an 595 

expected probability any given single nucleotide variant will be nonsynonymous rather than 596 

synonymous. 597 

For testing the pN/ps ratio for any individual ORF, we tested for excess nonsynonymous variants using a 598 

binomial test, the nonsynonymous variant probability, and the count of nonsynonymous and 599 

synonymous variants. For testing pN/pS among classes of ORFs, we summed up counts of both observed 600 

and expected nonsynonymous and synonymous variants across the entire class of ORFs before using the 601 

same binomial test. 602 
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Analysis of budding yeast genomes 603 

The genomes of 332 budding yeasts were taken from Shen et al. 201829. We applied TBLASTN and 604 

BLASTP for each S. cerevisiae translated ORF against each genome in this dataset (excluding the 605 

Saccharomyces genus). Default settings were used except for setting an e-value threshold of .1; results 606 

were then filtered by a stricter e-value threshold as described in each analysis.   607 

Coding Score 608 

The coding score, described by Ruiz-Orera et al. 201460, is a measure of how close the hexamer (i.e., the 609 

nucleotide sequence of a pair of adjacent codons) frequency  of an ORF is to the hexamer coding vs. 610 

non-coding sequences. Hexamer frequencies were calculated among all sequences annotated as 611 

“verified” or “uncharacterized” ORFs by Saccharomyces Genome Database. Hexamer frequencies were 612 

also calculated among all intergenic sequence. As intergenic sequence has no codon structure, hexamer 613 

frequencies for intergenic sequence were counted as if read in each possible coding frame. The score 614 

was then calculated as described in Ruiz-Orera et al. 2014. 615 

Literature analysis of transient translatome ORFs 616 

For each annotated ORF, we examined all publications listed on SGD as “primary” or “additional” 617 

literature for the ORF. If the ORF had a phenotypes in any listed publication, we noted the evidence for 618 

the phenotype (Supplementary Table 5). 619 

Genetic interaction analysis 620 

Single mutant fitness and genetic interaction data were downloaded from TheCellMap.org61. In this 621 

dataset, mutants of nonessential genes are full deletions and mutants of essential genes are 622 

temperature-sensitive alleles. Transient ORFs were all nonessential. Different temperature-sensitive 623 

alleles for the same essential gene were treated separately. For all analyses, we only included genetic 624 

interactions with a p-value < 0.05.  625 

For each transient ORF or nonessential gene, we calculated how many show at least one genetic 626 

interaction value at Ɛ<-.2 or Ɛ<-.35. We then divided this number by the total number of transient ORFs 627 

or nonessential genes in the Costanzo et al. 201646 genetic interaction dataset to calculate the 628 

percentage showing at least one genetic interaction.  629 
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Interaction densities were calculated for each ORF by dividing the number of interactions at Ɛ<-.2 either 630 

with nonessential or essential genes to the total number of double mutants with nonessential or 631 

essential genes, respectively.   632 

We created an unweighted-undirected network from the interactions at Ɛ<-.2 and calculated the degree 633 

of each transient ORF. This network was then used to create the subnetwork shown in Figure 7E. 634 

Gene ontology analysis of the interactors of each ORF was conducted with Ontologizer,62 using 635 

Benjamini-Hochberg multiple testing correction and the term-for-term calculation method. The gene 636 

association file was downloaded from SGD.  637 
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