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Abstract The high-level organization of the cell is embedded in long-range interactions that 9 

connect distinct cellular processes. Existing approaches for detecting long-range interactions 10 

consist of propagating information from source nodes through cellular networks, but the 11 

selection of source nodes is inherently biased by prior knowledge. Here, we sought to derive 12 

an unbiased view of long-range interactions by adapting a perturbation-response scanning 13 

strategy initially developed for identifying allosteric interactions within proteins. We 14 

deployed this strategy onto an elastic network model of the yeast genetic network. The 15 

genetic network revealed a superior propensity for long-range interactions relative to 16 

simulated networks with similar topology. Long-range interactions were detected 17 

systematically throughout the network and found to be enriched in specific biological 18 

processes. Furthermore, perturbation-response scanning identified the major sources and 19 

receivers of information in the network, named effector and sensor genes, respectively. 20 

Effectors formed dense clusters centrally integrated into the network, whereas sensors 21 

formed loosely connected antenna-shaped clusters. Long-range interactions between effector 22 

and sensor clusters represent the major paths of information in the network. Our results 23 

demonstrate that elastic network modeling of cellular networks constitutes a promising 24 

strategy to probe the high-level organization of the cell. 25 

  26 
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Introduction 27 

Cellular networks are high-level representations of the relationships between genes or 28 

between their encoded products. These networks represent genes as nodes and interactions 29 

as edges. The interactions may involve direct physical relationships between biomolecules 30 

(proteins, transcripts), or functional relationships between genes including epistatic genetic 31 

interactions or coordinated regulation of gene expression.1 In-depth analysis of the local 32 

interactions around one or several genes of interest allows to identify biological modules2 33 

and disease-associated groups of genes,3 and to elucidate unknown gene functions.4,5 Taken 34 

in concert, global analysis of the structure and dynamics of cellular networks can aid in 35 

further understanding the overarching biological and physical mechanisms that govern 36 

cellular machinery and behavior.6 37 

Genetic interactions play a central role in genotype-phenotype relationships.7 Genetic 38 

perturbations (e.g., gene deletions or mutations) may alter only the local interaction 39 

neighborhood for a molecule, but the effects of a local alteration can also propagate through 40 

the network and cause changes on a larger scale. For instance, genetic alterations that 41 

rewire an established transcriptional program, disrupt chromatin context, or prevent the 42 

activation of a signal transduction pathway can impact numerous downstream genes and 43 

processes.8 Therefore, to capture the breadth of genetic perturbation effects, it is crucial to 44 

study both short- and long-range interactions.9 45 

The study of long-range interactions poses a computational challenge.10 Network 46 

propagation (also referred to as information transfer or geometric diffusion) methods11–13 47 

have been widely used to identify long-range relationships between genes14–16 or within 48 
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biomolecular structures.17 The basic principle of these methods is to model a diffusion 49 

process starting from a source node, similar to the flow of a liquid or heat in a solid matter, 50 

and to calculate the amount of diffusion often modeled as a Markovian process across the 51 

network. The amount of diffusion across the network is used as a metric quantifying the 52 

long-range relationship. For some applications, this is equivalent to a random walk with 53 

restart process on the network nodes.16 These propagation methods have a wide range of 54 

applications from identifying disease-related genes18,19 to protein homology detection.20 55 

An important caveat for the use of network propagation for genetic networks is the 56 

requirement for prior information about well-characterized source genes, such as disease 57 

genes. This introduces an inherent bias that prevents the discovery of novel relationships 58 

that are not related to prior knowledge. Thus, to obtain a comprehensive understanding of a 59 

network’s long-range relationships, an unbiased approach is needed in which all nodes 60 

should be considered as possible sources and all possible long-range relationships should 61 

be investigated. However, not all genes will engage equally in long-range relationships. 62 

Based on their biological properties, some genes could be involved in many cellular 63 

pathways and thus might be more effective at propagating information to other genes; or 64 

some genes might be involved in specific signaling pathways such that their sensitivity at 65 

receiving and integrating signals is crucial to their cellular role. Thus, unbiased 66 

identification of the key propagation-mediating genes is critical to discover important long-67 

range relationships in genetic networks. 68 

To achieve this goal, we leveraged a perturbation-response scanning (PRS) strategy 69 

initially developed for the unbiased identification of long-range interactions within 70 
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molecular structures.21–23 The structures (proteins or chromosomes) are represented by 71 

elastic network models (ENM)24 where each network node represents a physical entity 72 

(e.g., a residue, domain, monomer, or gene locus in the chromatin)25 and each network edge 73 

is modeled as a spring that represents a physical interaction between the nodes. ENM 74 

representation allows for the application of forces/perturbations on network nodes and then 75 

measurement of the cooperative motions/responses of all other nodes, where the former 76 

represent the initial information and the latter represents the propagated information 77 

(Figure 1A). We reasoned that PRS could be successfully extended to genetic networks 78 

because they lend themselves to ENM representations and because spring-based modeling 79 

of genetic networks has already proven to be valuable for both visualization26 and 80 

biological inference.27 81 

Here, we adapted the PRS strategy to identify critical propagation-mediating nodes 82 

and obtain a global, unbiased view of long-range interactions in the comprehensive genetic 83 

interaction profile similarity network (GI PSN) generated for S. cerevisiae by Costanzo et 84 

al.28 We evaluated the signal propagation ability of each yeast gene using two metrics: 85 

sensitivity and effectiveness. Sensitivity is defined as the propensity to receive information, 86 

independent of the source; effectiveness is defined as the ability to transmit information to 87 

other genes.22 Genes distinguished by their high ability to receive and transmit information 88 

are defined as sensors and effectors, respectively. Our analysis uncovers critical network 89 

clusters formed by effector and sensor genes and unveils the long-range interactions 90 

connecting seemingly unrelated cellular processes. 91 
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Results 92 

PRS clusters genes based on their potential to receive and transmit information 93 

 94 
Figure 1: Perturbation Response Scanning (PRS) in the yeast genetic interaction 95 
profile similarity network (GI PSN). A) The PRS strategy. A network is first transformed 96 
into the Laplacian matrix describing the network connectivity. Eigenvalue decomposition 97 
of the Laplacian yields the eigenvalues and eigenvectors used to calculate the PRS matrix. 98 
Each row of the PRS matrix corresponds to the perturbed node, each column corresponds to 99 
responding nodes and the colors show the magnitude of the response. Row and column 100 
averages of the PRS matrix represent the effectiveness (right ordinate) and sensitivity 101 
(lower abscissa) profiles, respectively. B) PRS analysis of the GI PSN (left) yields the PRS 102 
matrix shown on the right. The nodes on the network are the genes and the edges represent 103 
high profile similarity. This network representation was used throughout the paper. Dashed 104 
boxes on the dendrograms along two axes of the PRS matrix indicate distinct row and 105 
column clusters. C) Effectiveness (left) and sensitivity (right) boxplots showing the 106 
differences between row and column clusters, respectively (***: p < .001, a.u.: arbitrary 107 
units, also used for the remaining figures). D) Representation of the distinct row (top) and 108 
column (bottom) clusters within the GI PSN. 109 
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The GI PSN contains 5,183 genes and 39,816 edges representing functional similarity 110 

between genes (Figure 1B, left). We constructed an ENM representation of the GI PSN and 111 

applied the PRS strategy to this network by perturbing each gene individually and 112 

measuring the responses of the other genes. This resulted in a 5,183-by-5,183 PRS matrix 113 

(Figure 1B, right) representing the perturbation-response relationship between all pairs of 114 

genes. Hierarchical clustering of the PRS matrix rows and columns clearly delineated 115 

groups of genes based on their information propagation profiles. Notably, one row and one 116 

column cluster were separated from the rest of the genes in the dendrograms (Figure 1B, 117 

dashed boxes on the dendrograms). The nodes in these two distinct clusters displayed 118 

higher effectiveness and sensitivity than the rest of the genes in the network, respectively 119 

(Figure 1C, p <.01, permutation test). Next, we mapped the genes belonging to these 120 

distinct clusters on the network. The distinct row cluster corresponded to highly connected, 121 

central regions of the network. In contrast, the distinct column cluster corresponded to 122 

genes that are distributed throughout the network, with a tendency to be in peripheral 123 

locations (Figure 1D). Overall, PRS-based clustering identified two classes of genes; one 124 

with high effectiveness located in densely connected regions; and another with high 125 

sensitivity, at loosely connected regions of the network. 126 
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GI PSN displays a remarkable potential for long-range interactions 127 

 128 
Figure 2: The GI PSN displays superior information propagation potential compared 129 
to randomly rewired networks with identical degree distributions. A) Degree and 130 
effectiveness scatter plot shows strong correlation between degree and effectiveness in the 131 
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GI PSN (Pearson correlation, R = .9). B) Degree and sensitivity scatter plot shows no 132 
correlation between degree and sensitivity is observed in the GI PSN (Spearman’s rank 133 
correlation, 𝜌 = −.028). C) Degree distributions for the GI PSN (cyan) and the rewired 134 
networks (red). These distributions overlap by design. D) The correlation between degree 135 
and effectiveness is significantly higher in the GI PSN (blue vertical line) than that 136 
expected for the rewired networks (dashed red distribution, average R=.72). E) The 137 
correlation between degree and sensitivity is significantly weaker in the GI PSN (blue 138 
vertical line) than expected from rewired networks (dashed red distribution, average 𝜌 =139 
−.99). Nodes in the GI PSN (blue distributions) exhibit significantly higher effectiveness 140 
(F) and sensitivity (G) compared to random network nodes (red dashed distributions). 141 

The local connectivity of each node can be summarized by its degree (number of 142 

neighbors), and the behavior of a network is largely characterized by its degree 143 

distribution.29 Thus, we sought to understand how the degree of nodes and the degree 144 

distribution of the GI PSN influence effectiveness and sensitivity profiles. We found that 145 

effectiveness was highly correlated with degree (Figure 2A, R = .9), whereas sensitivity 146 

was not (𝜌 = −.028), although nodes with low degrees (degree<10) tended to show higher 147 

sensitivity (Figure 2B, 𝜌 = −.97 for degree<10). To investigate the significance of these 148 

results, we compared the GI PSN to random networks generated by rewiring the GI PSN 149 

edges while keeping the degree distribution constant (Figure 2C). We first compared 150 

correlations derived from the GI PSN to those derived from 100 randomly rewired 151 

networks. The results showed that the GI PSN had a significantly stronger degree-152 

effectiveness correlation and weaker degree-sensitivity correlation than rewired networks 153 

(Figure 2D-E, p < .001, empirical p-value). Next, we examined the network’s effectiveness 154 

and sensitivity distributions of the real and rewired networks. Nodes in the GI PSN had 155 

overall higher effectiveness and sensitivity values than the random networks (Figure 2F-G, 156 

p < .001, empirical p-value). However, the shapes of both the distributions of effectiveness 157 

and sensitivity bear some interesting resemblance between the real and the randomized 158 
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networks (Figure 2F-G, red dotted and cyan solid curves). Since effectiveness and 159 

sensitivity measure the potential of the nodes to transmit and receive information, 160 

respectively, our results demonstrate that the GI PSN harbors significantly stronger signal 161 

propagation propensities than expected from its degree distribution alone. 162 

Sensors form “antenna-shaped” biological clusters loosely connected with the GI PSN 163 

 164 
Figure 3: Sensors form biologically enriched low-degree gene clusters on the network 165 
periphery. A) The first neighbors of sensors have low average degree relative to the 166 
neighbors of other genes in the network. B) Sensors are more densely connected to each 167 
other than expected from randomly sampled nodes with the same degree, as measured by 168 
the percentage of the between-group edges to total edges the nodes have (sensor group: 169 
blue vertical line; groups of randomly sampled nodes with same degree: red distribution). 170 
C) Representation of sensor genes in the GI PSN. Node colors represent sensor clusters 171 
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with distinct GO term enrichments (node colors and shapes, and edge colors were used 172 
similarly for the following figures). D) Sensor clusters exhibit comparable degrees (colored 173 
left) and are significantly lower than the degrees of other genes in the network (Kruskal-174 
Wallis, group-wise comparison including non-sensor genes). E) The sensor groups have 175 
similar sensitivity, except for ‘phenylalanine transport’ related sensors which show higher 176 
sensitivity (*: p < .05, for corrected p-values calculated by Mann-Whitney). F) Sensor 177 
clusters showing antenna motifs. Each cluster is shown with the network node that connects 178 
the cluster to the rest of the network (Triangles: Sensors, Circles: non-sensor connecting 179 
node) 180 

Genes with higher sensitivity are more likely to be involved in long-range interactions 181 

due to their ability to integrate information from other parts of the network. Thus, we first 182 

defined genes with high sensitivity (top 1%) as sensor genes (n=52) and investigated their 183 

topological and biological properties. Sensors tended to have low degrees and, in many 184 

cases, had only a single connection (Figure 2B). We hypothesized that sensors may be 185 

directly connected to genes with high effectiveness, as was observed for protein structure 186 

networks.22 However, this was not the case in the GI PSN. Sensors tended to be connected 187 

to other low degree genes (Figure 3A) while the genes with high effectiveness all had high 188 

degrees (Figure 2A). In fact, the first neighbors of sensors had degrees about two orders of 189 

magnitude smaller than the first neighbors of non-sensor genes (Figure 3A). Next, we 190 

investigated whether the sensors are connected to each other more than expected given their 191 

low degree. We compared the sensors to randomly sampled nodes with the same degree 192 

and calculated the percentage of the number of the between-group edges to the total number 193 

of edges. We found that the sensors had a strong tendency to connect to each other 194 

(Figure 3B, ~224 fold, p < .001, empirical p-value), revealing the existence of sensor 195 

clusters. 196 
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The sensors could be separated into nine clusters composed of connected components 197 

of three or more sensor genes which include 41 sensors out of the 52 total sensors in the 198 

network. Five of these nine sensor clusters could be assigned to a specific biological 199 

process through gene ontology (GO) enrichment analysis: tricarboxylic acid cycle (TCA) 200 

cycle, hexose metabolic process, iron ion transport, mitochondria-nucleus signaling, and 201 

phenylalanine transport (Figure 3C, Supplementary Data 1). While these sensor clusters 202 

had a lower degree than other genes in the network (Figure 3D, p < .001, Kruskal-Wallis, 203 

group-wise comparison including non-sensor genes), we did not see significant differences 204 

in the average node degree between these clusters (Figure 3D, p = .16, Kruskal-Wallis, 205 

group-wise comparison excluding non-sensor genes). Intriguingly, the sensor cluster related 206 

to ‘phenylalanine transport’ displayed the highest sensitivity (Figure 3E). 207 

To understand what distinguishes sensors from the many other low-degree genes in 208 

the network that did not display high sensitivity, we studied their topologies in depth. 209 

Interestingly, we found that most sensors were connected to the rest of the network by a 210 

single non-sensor node, creating antenna-shaped motifs (Figure 3F). These antenna motifs 211 

appeared to form an information bottleneck where the perturbation signal can enter the 212 

sensor cluster but cannot escape easily and transfer the signal to other nodes outside of the 213 

cluster. Thus, the sensitivity of lower degree nodes within antenna motifs, as opposed to 214 

those outside the motifs, may be increased by the local accumulation of PRS signals. 215 
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Effectors form biological clusters centrally integrated within the GI PSN 216 

 217 
Figure 4: Effectors form biologically enriched high degree gene clusters at the center 218 
of the network. A) The neighbors of effectors have high average degree relative to the 219 
neighbors of other genes in the network. B) Representation of effector genes in the GI PSN. 220 
Node colors represent effector clusters with distinct GO term enrichments (node colors and 221 
shapes, and edge colors were used similarly for the following figures). C) Effectors have a 222 
higher degree than other genes and the effector cluster with ‘Golgi vesicle transport’ 223 
enrichment has a higher average degree than other effector clusters (ns: non-significant, *: 224 
p < .05, ***: p < .001, for corrected p-values calculated by Mann-Whitney). D) 225 
Effectiveness values are not significantly different for different clusters of effectors. 226 

To investigate the most influential genes in the network, we defined genes with high 227 

effectiveness (top 1%) as effector genes (n=52) and studied their topological and biological 228 

properties. As opposed to sensors, effectors tended to connect to other high degree genes 229 

(Figure 4A). However, effector-effector edges consisted of only 7% of all edges involving 230 

effectors due to their extremely high degree. Nevertheless, they formed distinct network 231 
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clusters, with no direct connections between different effector clusters. We could separate 232 

all 52 effectors into three connected components. Each effector cluster could be assigned to 233 

a specific biological process by GO enrichment analysis: respiratory complex assembly, 234 

Golgi vesicle transport, and chromosome segregation (Figure 4B, Supplementary Data 1). 235 

We found that all three clusters have significantly higher average degrees than other genes 236 

in the network (Figure 4C, p < .001, Kruskal Wallis, group-wise comparison including non-237 

effector genes) and effectors involved in Golgi vesicle transport have a slightly but 238 

significantly higher average degree than effectors from the other two effector clusters 239 

(Figure 4C, p < .001, Kruskal Wallis, group-wise comparison excluding non-effector 240 

genes). However, there was no significant difference in effectiveness values between the 241 

three clusters (Figure 4D, p = 0.36, Kruskal Wallis). In summary, effectors formed three 242 

biological clusters that are centrally integrated within the GI PSN while being clearly 243 

distinct from each other. 244 
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Systematic detection of long-range interactions in the GI PSN 245 

 246 
Figure 5: PRS identifies biologically meaningful long-range interactions without 247 
relying on prior knowledge. A) Graphical representation of the pipeline used to define 248 
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highly responsive and highly influential gene sets. Each gene was analyzed as either the 249 
source of perturbation or responding to a perturbation and the genes were then ranked row-250 
wise, representing the responding genes, and column-wise, representing the perturbed 251 
genes. Then for each gene, the top 1% of row-wise (responding) and column-wise 252 
(perturbing) genes were classified as highly responsive or highly influential set and GO 253 
enrichment analysis was performed. B) Comparison of the GO enriched ranked groups 254 
using PRS or random walk with restart (RWR) derived relationships for row-based (highly 255 
responsive sets) and column-based (highly influential sets) rankings, respectively. Error 256 
bars show 95% confidence intervals and p-values were calculated using two proportion Z-257 
test) C) The PRS path from effector genes involved in chromosome segregation to sensors 258 
involved in mitochondria-nucleus signaling/TCA cycle which was found by perturbing the 259 
effector gene CTF4 and calculating the maximum information flow to sensor gene RTG1. 260 
D) Representation of the path shown in (C) within the GI PSN. E) The PRS path starting 261 
from effectors involved in respiratory complex assembly to iron transport sensors. 262 
Perturbation was applied to gene COA1 perturbation signal was followed through FET3. F) 263 
Representation of the path shown in (E) within the GI PSN. 264 

The PRS matrix (Figure 1B) quantifies information propagation between all pairs of 265 

genes in the GI PSN. The strongest long-range interactions can be extracted systematically 266 

by identifying the genes with the strongest response to each perturbed gene, and the genes 267 

causing the strongest perturbation to each responding gene. To evaluate the biological 268 

relevance of these systematically extracted long-range interactions, we created distinct sets 269 

of ranked ‘highly responsive’ and ‘highly influential’ genes based on their PRS profiles and 270 

evaluated the functional relatedness of genes within each set. First, for each row of the PRS 271 

matrix, or each gene acting as the perturbing source, we defined the genes that showed the 272 

highest responses on that row as the set of ‘highly responsive’ genes specific to the 273 

perturbed gene (Figure 5A, top). This method of ranking genes based on their 274 

responsiveness to a perturbed source gene has been used to identify disease-related 275 

genes.19,30,31 Additionally, we also implemented a novel target-based ranking procedure. 276 

For each column of the PRS matrix, or each gene acting as the responding target, we 277 

defined the genes that induced the highest perturbations on that column as the set of ‘highly 278 
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influential’ genes specific to the responding gene (Figure 5A, bottom). We then performed 279 

GO term enrichment analysis for ‘highly responsive’ or ‘highly influential’ sets which were 280 

defined separately for each source and target gene. 281 

Most of the ‘highly responsive’ and ‘highly influential’ gene sets were enriched in 282 

specific biological processes (72% and 84%, respectively; GO enrichment analysis, 283 

FDR<10%). Notably, most of the genes in ‘highly responsive’ or ‘highly influential’ sets 284 

had no direct interaction with the influential gene or the responding gene, demonstrating 285 

PRS’s ability to detect long-range relationships. Applying the same strategy to a similarity 286 

matrix derived from a random walk with restart (RWR) process, we found 77% and 70% of 287 

gene sets showed GO term enrichments for ‘highly responsive’ or ‘highly influential’ sets, 288 

respectively (Figure 5B, at FDR<10%). These results demonstrate that long-range 289 

interactions in the GI PSN harbor biological significance. 290 

Most (70%) of the GO enriched ‘highly influential sets’ identified by our novel target-291 

based prioritization strategy contained at least one out of the 52 previously described 292 

effector genes. Interestingly, these effector-containing groups were mostly distinct with 293 

respect to the three effector clusters defined in Figure 4B: when a ‘highly influential set’ 294 

contained an effector from one of the three effector clusters, there were no effectors 295 

belonging to the other two clusters. These observations suggest that the three effector 296 

clusters influence different parts of the GI PSN. 297 

As effectors and sensors are, by definition, critical nodes for long-range interactions, 298 

we inspected the information propagation paths derived from PRS signal transfer between 299 

clusters of effectors and sensors. A PRS path was defined as the node-weighted shortest 300 
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path, where the weights were the inverse of the node responses to the perturbed node. This 301 

procedure identified the cellular pathways connecting effector and sensor clusters. For 302 

example, the effectors related to chromosome segregation and sensors related to the TCA 303 

cycle and mitochondria-nucleus signaling were found to be interconnected via histone 304 

modification genes (Figure 5C-D). Similarly, respiratory complex assembly effectors were 305 

connected to iron transport sensors via mitochondrial and ER transport genes (Figure 5E-306 

F). Our analyses uncovered these otherwise buried paths as the long-range interactions 307 

between effector and sensor clusters, which are likely to constitute the pillars of the higher-308 

order organization of the GI PSN. 309 

Discussion 310 

In this study, we adapted the PRS methodology, initially designed for characterizing 311 

allosteric signal transductions in molecular structures,21–23 to define the information 312 

propagation potential of genes in the yeast GI PSN. This approach identified clusters of 313 

critical effector and sensor genes representing different cellular processes and successfully 314 

detected long-range biological relationships between these distinct clusters. While effectors 315 

could have been estimated using other network centrality measures, such as degree, to our 316 

knowledge our approach is the only one able to sort the most critical effectors and pinpoint 317 

critical clusters of low-degree sensor genes. 318 

Interestingly, the GI PSN demonstrated a superior propensity for information 319 

propagation compared to random networks with the same degree distribution. This suggests 320 

that other topological features of the GI PSN have evolved to enhance its capabilities for 321 
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information sensing and transmitting, or overall functionality. Such features may include 322 

the hierarchical organization of increasingly more connected clusters previously described 323 

for GI PSN28 as well as the antenna-shaped motifs we discovered. These antenna-shaped 324 

motifs lack strong connections to the rest of the network, whereas effector clusters are 325 

tightly connected to the rest of the network. These patterns of assortative connections may 326 

reflect an evolutionary optimization of sensing properties for activating selected responses, 327 

while enhancing downstream cooperativity via effector genes. 328 

Our results suggest that the precise topology of the GI PSN creates an opportunity or 329 

evolutionary adaptation for communication between distinct cellular processes. Beyond 330 

guilt-by-association11 and local network context analyses,1 our work illuminates how genes 331 

can communicate and affect processes beyond their local neighborhood. Altogether, our 332 

analyses add to the evidence26,27 that spring-based physical modeling of the networks can 333 

be a powerful tool to uncover the higher-order organization of the cell. It follows that more 334 

insight will arise from future work modeling biological networks as physical 3D objects. 335 

We anticipate that PRS strategies will extend to other types of complex networks, e.g., 336 

social, economic, microbiome where the identification of effectors and sensors together 337 

with the PRS paths may reveal important communication hubs and lines. 338 

Materials and Methods 339 

Yeast genetic interaction profile similarity network 340 

We obtained the data from TheCellMap32 (https://thecellmap.org/costanzo2016/, file: 341 

Genetic interaction profile similarity matrices). Details of the network construction can be 342 
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found in the supplementary materials of Costanzo et al.28 under the “Constructing genetic 343 

interaction profile similarity networks” section. In brief, the genetic interaction profile 344 

similarity between gene i and gene j is the Pearson’s correlation coefficient (PCC) between 345 

the genetic interaction profile vectors of i and j, which consist of genetic interaction scores 346 

experimentally estimated for all possible double mutants involving gene i or gene j: 347 

Profilesimilarityij = 𝑃𝐶𝐶,𝑃𝑟𝑜𝑓𝑖𝑙𝑒! , 𝑃𝑟𝑜𝑓𝑖𝑙𝑒"4. 348 

We used a PCC cutoff of 0.2 following the original publication,28 and derived the GI 349 

PSN containing every gene with at least one profile similarity of PCC > 0.2. This resulted 350 

in a network with 5,272 nodes and 39,866 unweighted and undirected edges. 351 

Elastic network models and perturbation response scanning matrix 352 

We used the Gaussian network model (GNM) to represent the GI PSN as an elastic 353 

mass-and-spring network object. The overall connectivity of the network is represented by 354 

a Laplacian (also called Kirchhoff) matrix, whose diagonal elements are the degree of each 355 

node, and non-zero, negative off-diagonal elements (equal to -1) indicate the connected 356 

pairs of nodes. We first took the largest connected component of the GI PSN, which was 357 

represented by a GNM of n = 5,183 nodes and 39,816 edges. The corresponding Laplacian 358 

was used to perform the PRS analysis as described by Li et al.33 Mainly, we used 359 

calcPerturbResponse function in ProDy,34 a Python API designed originally for analyzing 360 

protein dynamics, to calculate the PRS matrix. This function first calculates the covariance 361 

matrix (Cov) between pairs of nodes, using the eigenvalues and eigenvectors of the 362 

Laplacian, followed by the normalization of each row upon dividing it by the diagonal 363 

element. The ijth element of the resulting PRS matrix shows the response of the 𝑗th node 364 
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when the 𝑖th node is perturbed. The row and column averages of the PRS matrix give the 365 

effectiveness and the sensitivity profiles as a function of gene index [1, n ], respectively. 366 

PRS matrix clustering 367 

To perform the clustering of the PRS matrix elements, we used a hierarchical 368 

clustering algorithm implemented in the Python package SciPy. We first capped the outliers 369 

in the PRS matrix by normalizing the values above 95% of the matrix to be equal to 95% 370 

value. Then we calculated the pairwise standardized Euclidean distance between genes 371 

using rows or columns of the PRS matrix as the coordinates, and used ward linkage metric 372 

to construct a dendrogram of the genes. 373 

Network properties 374 

The following definitions are used. Node degree is the number of edges of a given 375 

node. Average neighbor degree is the average degree of the first neighboring nodes of a 376 

given node. Ratio of in-between edges for a given group of nodes is the ratio of the total 377 

number of edges that are directly connecting the nodes in the group to the total number of 378 

edges the nodes in the group have. 379 

Network rewiring 380 

To rewire the network while keeping the degree distribution the same, we applied an 381 

edge swapping procedure. A swap between two randomly selected edges is accepted if the 382 

network connectivity is not violated, i.e., no network node is disconnected from the 383 

network, and if the newly generated edges are not already in the network. This process is 384 

repeated a minimum of 10 times the number of edges in the network. The resulting rewired 385 

network maintains the same degree for each node as the original network, but has different 386 
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connections. For this process, we used connected_double_edge_swap function of the 387 

Python network analysis package, networkx.35 388 

Gene ontology enrichment analyses 389 

GO trees and annotations were downloaded from http://geneontology.org/ on May 20, 390 

2021. We used the Python package, GOATools,36 to calculate the number of genes 391 

associated with each GO term in the study group and the overall population of (all) genes. 392 

We excluded the evidence codes ND (no biological data available), IGI (inferred from 393 

genetic interaction), and HGI (inferred from high throughput genetic interaction) to remove 394 

any associations originating from the genetic interaction network we used. We applied 395 

Fisher’s exact test and false discovery rate (FDR) multiple testing correction to calculate 396 

corrected p-values for the enrichment of GO term in the study group. FDR<0.1 was taken 397 

as requirement for significance. 398 

Sensors and effectors group comparisons 399 

Kruskal-Wallis test was used to statistically investigate the differences between 400 

effector or sensor groups in terms of their degree, effectiveness or sensitivity values for the 401 

analyses shown in Figure 3D-E and Figure 4C-D. We applied kruskal.test function in R 402 

with a significance level of 𝛼 = .05. To find the group that deviates from the null model, 403 

we used Tukey’s HSD test,37 which is equivalent to a pairwise Wilcoxon test with multiple 404 

testing corrections. 405 

Random walk with restart 406 

We used the RWR formula defined in Leiserson et al.16 We calculated steady-state 407 

solution of RWR for each node. Then, we created an RWR matrix where each row 𝑖 408 
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represents the steady-state solution vector for RWR starting at node 𝑖. While this is similar 409 

to the PRS, row sums of the RWR matrix equal to one, showing the probability distribution 410 

of each random walk process and column sums are the PageRank centrality. RWR thus 411 

could not have been used instead of PRS to identify effectors and sensors in the network. 412 

PRS (or RWR) ranking 413 

To define highly responsive and highly influential gene sets, we implemented the 414 

ranking strategy illustrated in Figure 5A. For each gene 𝑖, we took the 𝑖th row of the PRS 415 

(or the RWR) matrix, sorted it in descending order, and took the top 52 genes as highly 416 

responsive group. Similarly, for each gene 𝑗, we took 𝑗th column of the PRS (or the RWR) 417 

matrix then ranked and selected in the same way to define highly influential group. Then 418 

we used GOATools to calculate the enriched GO terms corresponding to these groups of 52 419 

genes as explained above. 420 

PRS path analysis 421 

For each path starting at gene 𝑖, we took 𝑖th row values of the PRS matrix as node 422 

weights. To find the path that carries the maximum information, we inversed node weights 423 

and used Dijkstra’s algorithm to find the shortest weighted path. Cytoscape and networkx 424 

were used to visualize the paths between effectors and sensors. Annotations were done 425 

manually using gene descriptions in Saccharomyces Genome Database (SGD).38 426 
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