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Abstract Genome sequences diverge more rapidly in mammals than in other animal lineages,

such as birds or insects. However, the effect of this rapid divergence on transcriptional evolution

remains unclear. Recent reports have indicated a faster divergence of transcription factor binding

in mammals than in insects, but others found the reverse for mRNA expression. Here, we show that

these conflicting interpretations resulted from differing methodologies. We performed an

integrated analysis of transcriptional network evolution by examining mRNA expression,

transcription factor binding and cis-regulatory motifs across >25 animal species, including

mammals, birds and insects. Strikingly, we found that transcriptional networks evolve at a common

rate across the three animal lineages. Furthermore, differences in rates of genome divergence were

greatly reduced when restricting comparisons to chromatin-accessible sequences. The evolution of

transcription is thus decoupled from the global rate of genome sequence evolution, suggesting

that a small fraction of the genome regulates transcription.

DOI: 10.7554/eLife.11615.001

Introduction
A long-standing question in biology is what fraction of the genome regulates transcription

(ENCODE Project Consortium, 2012; Graur et al., 2013; Niu and Jiang, 2013; Kellis et al., 2014).

Recent studies of chromatin structure have implicated half of the human genome in regulatory inter-

actions (ENCODE Project Consortium, 2012). Comparative genomic studies, however, have shown

that less than 10% of the human genome is evolutionarily conserved (Siepel et al., 2005), suggesting

that many of the experimentally-detected interactions are not functional (Graur et al., 2013). Recent

studies have measured the association between sequence changes and changes in transcript levels,

epigenetic modifications or binding of transcription factors regulating specific gene sets (gene-spe-

cific transcription factors, GSTF) (Cookson et al., 2009; McVicker et al., 2013; Kasowski et al.,

2010; 2013; Heinz et al., 2013; Villar et al., 2014; Wong et al., 2015; Brem et al., 2002;

Chan et al., 2009; Shibata et al., 2012). These experiments demonstrated that genomic sequences

can influence transcription even in the absence of evolutionary conservation. For instance, some

repetitive elements previously thought to be ’junk’ DNA have been shown to effectively regulate

gene expression (Rebollo et al., 2012). The rapid evolution of repetitive and other rapidly-evolving

sequences could cause pervasive rewiring of transcriptional networks through creation and destruc-

tion of regulatory motifs (Villar et al., 2014). Such rapid transcriptional evolution would set mam-

mals apart from other metazoans like birds or insects, whose genomes contain far fewer repetitive

elements (Taft et al., 2007) and tend to be more constrained (Siepel et al., 2005; Zhang et al.,

2014).

A few studies have attempted to assess whether transcriptional networks evolve more rapidly in

mammals than in insects from the fruit fly genus Drosophila. These studies have reached conflicting

conclusions. When examining the evolution of GSTF binding, chromatin immuno-precipitation (ChIP)

studies in mammalian livers have generally described faster divergence rates than similar studies in
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fly embryos (Villar et al., 2014; Stefflova et al., 2013). However, divergence rates were estimated

with different analytical methods in the different ChIP studies (Supplementary file 1) (Villar et al.,

2014; Bardet et al., 2012). Another study found that gene expression levels may diverge at a slower

rate in mammals than in flies, by comparing genome-wide correlations of mRNA abundances esti-

mated by RNA sequencing (RNA-seq) for mammals but by a mixture of technologies for flies includ-

ing microarrays (Coolon et al., 2014). Although the inconsistencies between these conclusions may

indicate that the evolution of transcriptional networks is fundamentally different in mammals and

insects, they may also reflect a sensitivity of evolutionary rate estimations to technical methodology.

Here, we jointly examined the evolution of gene expression levels and the underlying genome-

wide changes in GSTF binding and cis-regulatory sequences using consistent methodologies both

within and across various animal lineages.

Results
We assembled a comparative genomics platform encompassing >40 publicly available datasets

spanning >25 organisms representative of the Mammalia (mammals), Aves (birds) and Insecta

(insects) phylogenetic classes (Figure 1—figure supplement 1). We designed a statistical framework

to objectively compare the rates of divergence of these various datasets across lineages. In brief, an

exponential model describing evolutionary divergence under a common, lineage-naı̈ve rate was eval-

uated against a lineage-aware model, accounting for both statistical significance and effect size (Fig-

ure 1; Materials and methods). We assessed the power of this statistical framework using

simulations and found that it could detect differences in divergence rates with high sensitivity (Mate-

rials and methods; Figure 1—figure supplement 2).

As a baseline, we first performed a comparative analysis of the evolution of genome sequences.

We randomly sampled genomic segments from designated reference genomes: Mus musculus

domesticus (C57BL/6) for mammals, Gallus gallus for birds and Drosophila melanogaster for insects.

The rates at which genomic segments that retained homologs with the other species within each

lineage accumulate nucleotide substitutions were then estimated and compared using our statistical

framework. Segments retaining homologs displayed high sequence conservation across all three lin-

eages, although our framework detected a slightly but significantly faster divergence in insects than

in mammals or birds (P<0.05; Figure 2—figure supplement 1). Next, we compared the rates at

which randomly sampled genomic segments lost homology with the other species within each line-

age. We observed a much larger difference in evolutionary rates across lineages using this measure

eLife digest The genetic information that makes each individual unique is encoded in DNA

molecules. Cells read this molecular instruction manual by a process called transcription, in which

proteins called transcription factors bind to DNA in specific places and regulate which sections of

the DNA will be expressed. These ’transcripts’ are active molecules that determine the cell’s – and

ultimately the individual’s – characteristics. However, it is not well understood how alterations in the

DNA of different individuals or species can lead to changes in where the transcription factors bind,

and in which transcripts are expressed.

Carvunis, Wang, Skola et al. set out to determine if there is a relationship between how often

DNA changes and how often transcription changes during the evolution of animals. The experiments

examined the abundance of transcripts in the cells of a variety of animal species with close or distant

evolutionary relationships. For example, the house mouse was compared to a close relative called

the Algerian mouse, to another species of rodent (rat) and to humans.

The experiments show that the changes in transcript abundances are happening at similar rates in

mammals, birds and insects, even though DNA changes at very different rates in these groups of

animals. This similarity was also observed for other aspects of transcription, such as in changes to

where transcription factors bind to DNA. The next challenges are to find out what makes

transcription evolve at such similar rates in these groups of animals, and whether these findings

extend to other species and to other processes in cells.

DOI: 10.7554/eLife.11615.002
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(P<0.05; Figure 2; Figure 2—figure supplement 2). For instance, after 100 million years (Myrs) of

evolution, only ~30% of mammalian segments retained homology, whereas >60% of bird and insect

segments did. These findings recapitulated previous observations according to which genome

sequences are less constrained in mammals than in insects (Siepel et al., 2005) or birds

(Zhang et al., 2014).

Figure 1. Statistical framework to evaluate differences in evolutionary rates of change. Throughout this study we

frequently evaluated whether the rate of evolutionary divergence of a given layer of transcriptional regulation

differs between lineages. Our approach is equivalent to asking: if the lineage labels were hidden, would one be

able to tell that the data points correspond to several lineages or would they seem equally likely to belong to a

common distribution? (a, b) Depict an example of statistically indistinguishable evolutionary rates. Without lineage

labels (a), the similarity data are modeled by an exponential decay as well as with lineage labels (b). Adding

lineage labels does not significantly improve the fit. (c, d) Depict an example of statistically different evolutionary

rates. Adding lineage labels (d) significantly improves the fit of an exponential decay model over unlabeled data

(c).

DOI: 10.7554/eLife.11615.003

The following figure supplements are available for figure 1:

Figure supplement 1. Comparative genomics platform for studying transcriptional network evolution across three

metazoan lineages.

DOI: 10.7554/eLife.11615.004

Figure supplement 2. Power of the statistical framework to evaluate differences in evolutionary rates.

DOI: 10.7554/eLife.11615.005
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We then studied the evolution of gene expression levels, using exclusively RNA-seq datasets. In

mammals and birds, these datasets were generated from adult livers; in insects, they were from

whole bodies of adult female fruit flies (Materials and methods; Figure 3—source data 1). After

determining expression levels for each gene in each species using a common data processing pipe-

line, we correlated the expression levels of genes in the reference species with the expression levels

of their one-to-one orthologs in all other species within the same lineage (Materials and methods).

We found that correlations of gene expression levels decreased over time at similar rates that were

statistically indistinguishable: a lineage-naı̈ve model describing the evolution of gene expression lev-

els under a common rate fitted the data as well as a lineage-aware model (Figure 3). This result was

robust to changes in correlation metrics or inclusion/exclusion of poorly expressed genes (Figure 3—

figure supplement 1).

Several lines of evidence suggest that gene expression levels can remain relatively stable even as

the genomic locations bound by GSTFs change rapidly over time (Wong et al., 2015; Chan et al.,

2009; Paris et al., 2013). Therefore, we next examined the evolution of GSTF binding patterns. We

considered all GSTFs that were profiled using ChIP followed by massively parallel sequencing (ChIP-

seq) in at least three related species, where separate ChIPs were performed per species. GSTFs

Figure 2. Genomic sequences evolve more rapidly in mammals than in birds and insects. The evolutionary

retention of 5000 randomly sampled 75 bp segments was averaged over 20 trials. Organisms compared to

reference species are as follows: M. musculus domesticus (AJ), M. musculus castaneus, M. spretus, rat, guinea pig,

rabbit, human, chimpanzee and dog for Mammalia; turkey, zebrafinch and flycatcher for Aves; D. simulans, D.

erecta, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis, D. willistoni and D. grimshawi for Insecta. Colored

dashed lines: lineage-specific exponential fits, here and in all following displays. The trends were robust to

variations in segment length and sequence similarity filters (Figure 2—figure supplement 2).

DOI: 10.7554/eLife.11615.006

The following figure supplements are available for figure 2:

Figure supplement 1. Genomic segments retaining homologs are highly conserved at the nucleotide level.

DOI: 10.7554/eLife.11615.007

Figure supplement 2. Retention of genomic segments is robust to changes in sampled region size and sequence

identity threshold.

DOI: 10.7554/eLife.11615.008
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meeting these requirements were Twist and Giant in fruit fly embryos, and CEBPA, FOXA1 and

HNF4A in mammalian livers (Materials and methods; Figure 4—source data 1; Supplementary file

1). We aimed to measure cross-species similarity in GSTF occupancy with a unified analytical method

across all of these datasets. Despite the widespread use of ChIP-seq, there is no consensus on the

appropriate analytical method (Wilbanks and Facciotti, 2010). ChIP-seq analysis pipelines typically

discretize continuous occupancy profiles into a set of occupied segments (’peaks’), but this step

requires choosing a signal processing algorithm (a peak caller) and associated parameters

(Figure 4a). Further comparison of occupied segments across species requires additional analytical

choices (Figure 4a), some of which can strongly influence downstream findings (Bardet et al., 2012).

To explore the impact of these choices, we processed all ChIP-seq data using systematic combi-

nations of parameters representative of, and expanding from, previous studies (Supplementary file

1) (Landt et al., 2012). In total, we executed 108 analytical pipelines to compare divergence rates

across 6 pairs of GSTFs (2 in insects each compared with 3 in mammals), the occupancy profiles of

which were examined in 3–7 species per lineage (Materials and methods). The values of the esti-

mated rates varied greatly from one combination of parameters to the next (Figure 4b,c). However,

in the majority of cases (56–78% over the 6 comparisons), GSTF binding patterns diverged at

Figure 3. Gene expression levels diverge at a common rate in mammals, birds and insects. Gene expression levels

were derived independently from two RNA-seq experiments for each reference species and then correlated

against each other and against gene expression levels derived from individual experiments in other species within

the same lineage. Black dashed line: lineage-naı̈ve exponential fit of all the data, without differentiating the

lineages, here and in all following displays. Organisms compared to reference species are as follows: M. musculus

castaneus, M. spretus, rat, human and gorilla for Mammalia; turkey, duck and flycatcher for Aves; D. simulans, D.

yakuba, D. ananassae and D. pseudoobscura for Insecta.

DOI: 10.7554/eLife.11615.009

The following source data and figure supplement are available for figure 3:

Source data 1. Accession numbers used in RNA-seq analyses.

DOI: 10.7554/eLife.11615.010

Figure supplement 1. The common evolutionary rate of gene expression levels presented in Figure 3 is robust to

changes in correlation metrics or expression threshold.

DOI: 10.7554/eLife.11615.011
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Figure 4. GSTF occupancy diverges at a common rate in mammals and insects. (a) Estimating shared GSTF

occupancy across species requires multiple parameter choices. This diagram summarizes the main steps involved

in comparing GSTF-occupied segments across species, showing a representative sample of choices at each step

(steps represented by purple shapes, specific choices by the first letter bolded). The detailed methods and

specific choices illustrated here and implemented in panels b–d are described in Materials and methods. (b, c) An

example of different analytical choices leading to different results despite starting from the same underlying data.

Organisms compared to reference species are as follows: M. musculus domesticus (AJ), M. musculus castaneus, M.

spretus, rat, human and dog for Mammalia; D. simulans, D. erecta, D. yakuba, D. ananassae and D.

pseudoobscura for Insecta. (d) Most combinations of choices yield indistinguishable evolutionary rates of GSTF

binding patterns across lineages. The comparison of Twist and CEBPA is enlarged to show the color labels

corresponding to the statistical interpretation regarding relative evolutionary rates. (e) A genome-wide comparison

Figure 4 continued on next page
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statistically indistinguishable rates in mammals and insects (Figure 4d; Figure 4—source data 2).

Although the computed divergence rates were sensitive to technical methodology (Figure 4—figure

supplement 1), for a given method the results were generally similar across lineages for all of the

five GSTFs investigated.

To substantiate these findings, we devised a method to compare genome-wide occupancy pro-

files at single-nucleotide resolution without discretization. We correlated occupancy profiles

between pairs of species across all nucleotides where genomes aligned, after accounting for the dif-

ferences in sequencing depth, read length and fragment size across datasets (Materials and meth-

ods). Again, we found indistinguishable divergence rates, regardless of which GSTF or lineage was

examined (Figure 4e). After 100 Myrs of evolution, the correlation of GSTF occupancy profiles was

0.10 in mammals and 0.13 in insects. As a control, we also applied this method to CTCF, a pleiotro-

pic DNA-binding protein that acts as chromatin insulator and looping factor (Ohlsson et al., 2010).

In mammals, patterns of DNA occupancy have been shown to be more conserved for CTCF than for

GSTFs using unified analytical methods (Schmidt et al., 2012). In contrast, CTCF DNA occupancy

was shown to diverge rapidly in insects, perhaps due to the existence of other insulator proteins

(Villar et al., 2014; Ni et al., 2012). Our analysis successfully recapitulated this difference

(Figure 4f), demonstrating that the common evolutionary rate observed among GSTFs (Figure 4e)

was not an artifact of our method for profile correlation.

The similarity of divergence rates observed across lineages for gene expression levels (Figure 3)

and GSTF binding patterns (Figure 4) was unexpected given the rapid evolution of genomic sequen-

ces in mammals relative to insects (Siepel et al., 2005) or birds (Zhang et al., 2014) (Figure 2). We

therefore further examined these trends at the level of cis-regulatory sequences. First, we consid-

ered the DNA sequence motifs thought to be specifically recognized by the mammalian and insect

GSTFs included in the previous ChIP-seq analysis (Figure 4). We identified locations with significant

matches to these motifs throughout the genomes of the reference species and estimated how fre-

quently these loci retained the same motifs relative to background expectations (Materials and

methods). We found similar, indistinguishable retention rates in mammals and insects (Figure 5a).

Next, we studied the evolution of a broader set of motifs corresponding to GSTFs shared between

M. musculus and D. melanogaster. We found that these motifs were retained at similar rates across

lineages relative to background expectations in 8 out of 12 cases (one example shown in Figure 5b;

all other cases in Figure 5—figure supplement 1).

Most active cis-regulatory sequences are located in genomic regions with accessible chromatin

(Hesselberth et al., 2009). A recent study showed that chromatin-accessible sequences were signifi-

cantly more conserved between human and mouse than expected by chance (Yue et al., 2014). We

expanded this analysis to a wide range of species by using chromatin-accessible sequences identi-

fied by DNAse I hypersensitivity in M. musculus livers, D. melanogaster embryos and G. gallus MSB-

1 cells (Materials and methods). We performed the segment sampling procedure described previ-

ously (Figure 2), after excluding genes and promoter regions since they typically are highly con-

served (Materials and methods). Whereas inaccessible segments lost homology much faster in

mammals than in insects and birds (P<0.05; Figure 5c), accessible segments retained homologs at

more similar rates in the three lineages (Figure 5d; Figure 5—figure supplement 2). We still

Figure 4 continued

of GSTF occupancy profiles at single-nucleotide resolution shows indistinguishable evolutionary rates for CEBPA,

HNF4A and FOXA1 in mammals, and for Twist and Giant in insects. PCC: Pearson correlation coefficient. (f) CTCF

occupancy is highly conserved in mammals. Transparent points and lines are identical as in panel e. Hexagons

correspond to cross-species correlations of CTCF occupancy at single-nucleotide resolution.

DOI: 10.7554/eLife.11615.012

The following source data and figure supplement are available for figure 4:

Source data 1. Accession numbers used in ChIP-seq analyses.

DOI: 10.7554/eLife.11615.013

Source data 2. 648 segment-based ChIP analyses.

DOI: 10.7554/eLife.11615.014

Figure supplement 1. Measured GSTF binding divergence rates are influenced by parameter choices.

DOI: 10.7554/eLife.11615.015
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detected statistically significant differences across lineages (P<0.05), but the effect sizes were con-

siderably smaller than for inaccessible segments. For instance, ~60% of segments retained homology

after 100 Myrs in birds and insects, independently of accessibility, whereas ~50% of chromatin-acces-

sible segments and only ~20% of inaccessible segments did so in mammals.

Figure 5. Regulatory sequences diverge at similar rates across lineages. (a) The motifs for CEBPA, HNF4A and

FOXA1 in mammals and for Twist and Giant in insects are retained at a common rate. Organisms compared to

reference species are the same as Figure 4. (b) The motifs for GSTFs shared in mammals and insects are retained

at common rates. One example is shown here for the motifs corresponding to PHO (FBgn0002521) in D.

melanogaster and YY1 (ENSMUSG00000021264) in M. musculus, which are orthologous GSTFs. Eleven other cases

of motif evolution for shared GSTFs conserved in mammals and insects are shown in Figure 5—figure

supplement 1. Organisms compared to reference species are as in Figure 4. (c, d) Chromatin-accessible

sequences are retained at similar rates in mammals, birds and insects. Analyses were performed as in Figure 2,

limiting sampling to the inaccessible (c) and accessible (d) portions of the intergenic regions. Organisms

compared to reference species are the same as Figure 2. The trends were robust to variations in segment length

and sequence similarity filters (Figure 5—figure supplement 2).

DOI: 10.7554/eLife.11615.016

The following figure supplements are available for figure 5:

Figure supplement 1. Conservation of cis-regulatory motifs for GSTFs conserved across insects and mammals.

DOI: 10.7554/eLife.11615.017

Figure supplement 2. Retention of intergenic genomic segments in accessible and inaccessible chromatin is

robust to changes in sampled region size and sequence identity threshold.

DOI: 10.7554/eLife.11615.018
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Discussion
To our knowledge, the analyses presented here represent the most comprehensive study conducted

to date on the evolution of transcriptional networks across animal lineages. By applying unified ana-

lytical methods to data from different lineages, we were able to glean novel insights into the evolu-

tion of transcription in animals. We observed that gene expression levels, GSTF binding patterns,

regulatory motifs and chromatin-accessible sequences each diverged at rates that were similar

across mammals, birds and insects. These unexpected results reconcile previously conflicting find-

ings (Villar et al., 2014; Coolon et al., 2014), highlighting the importance of unified study method-

ologies and providing evidence for a common evolutionary rate in metazoan transcriptional

networks.

Most functional genomics studies have focused on humans and model organisms such as D. mela-

nogaster or M. musculus, which are distantly related to each other. However, data on closely related

species, like those which we collected in this study, are needed to investigate the dynamics of

molecular network evolution. Unfortunately, such data remain scarce, leading to important limita-

tions of our work. We only investigated three lineages and six to twelve organisms per lineage with

non-uniform coverage over evolutionary time. In addition, we only examined a small number of tis-

sues for each lineage and a total of five GSTFs (none in birds). The generalizability of our observa-

tions thus remains to be further evaluated as more data becomes available. Despite these

limitations, our finding that transcriptional networks evolve at a common rate per year across animal

lineages was strikingly robust across data layers.

The underlying mechanisms responsible for this concordance of evolutionary rates are unclear.

Mammals, birds and insects exhibit wide differences in the features that are traditionally associated

with evolutionary rates, such as generation times and breeding sizes. Populations with small breed-

ing sizes, such as mammals, are thought to be more prone to genetic drift (Ohta, 1992). This theory

accounts for the abundance of repetitive elements and the rapid evolution of genomic sequences in

mammals relative to insects, which have much larger breeding sizes. If the same theoretical princi-

ples also governed the evolution of transcriptional networks, we would have expected that transcrip-

tion would evolve more rapidly in mammals than in insects. Instead, our results show that the

evolution of transcriptional networks, whether slow (e.g. transcript levels) or fast (e.g. GSTF binding),

is decoupled from the lineage-specific features that govern genome sequence evolution.

One potential model could be that repetitive and rapidly-evolving sequences, which make up the

majority of the mammalian genome (Siepel et al., 2005; Taft et al., 2007), play a negligible role in

the global regulation of gene expression. Rather, chromatin-accessible regions may represent the

only portion of the mammalian genome that effectively regulates transcription. We observed that

chromatin-accessible regions diverge much more slowly than other non-coding sequences in mam-

mals, consistent with previous findings (Yue et al., 2014). These differences in divergence rates,

however, were not found in birds and insects. As a result, chromatin-accessible regions in mammals

are conserved at levels similar to those in birds and insects, in contrast to the genome as a whole.

According to this model, the similar rates of evolution of chromatin-accessible sequences would con-

strain the dynamics of transcriptional evolution to be similar across lineages. The regulatory potential

of repetitive and other rapidly-evolving elements could be rendered functionally inconsequential by

silencing, or could be concentrated on controlling the expression of genetic elements that we did

not investigate, such as non-coding RNAs or species-specific genes (Sundaram et al., 2014).

An alternative model could be that the sequences that control transcriptional regulation in birds

and insects evolve particularly rapidly within otherwise stable genomes. In these organisms, tran-

scriptional networks would diverge under the action of natural selection, through specific single

nucleotide substitutions resulting in rapid compensatory turnover (He et al., 2011a). In mammals,

transcriptional networks would diverge in a largely neutral fashion driven for instance by

transposable elements (Sundaram et al., 2014). In this case, similar rates of transcriptional diver-

gence across lineages would arise through very different evolutionary processes.

Importantly, none of the aforementioned models account for the differences in generation times

between lineages. Evolutionary changes occurring based on chronological time and not generation

time has also been observed for many protein-coding sequences. Observations such as these led to

the molecular clock theory (Kumar, 2005). The mechanisms through which environmental forces

entrain these chronological evolutionary clocks remain to be elucidated (Kumar, 2005).
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Materials and methods

Genome and annotation sources
We downloaded genome sequences for organisms belonging to three metazoan lineages: mammals,

birds and insects. The mammalian and insect genome sequences were downloaded from the UCSC

Genome Bioinformatics website (Rosenbloom et al., 2015): mm9 for Mus musculus domesticus, rn5

for Rattus norvegicus and hg19 for Homo sapiens; dm3 for Drosophila melanogaster, droSim1 for

Drosophila simulans, droEre2 for Drosophila erecta, droYak2 for Drosophila yakuba, droAna3 for

Drosophila ananassae and dp4 for Drosophila pseudoobscura. Genomes for mice strains and species

not available from the UCSC Genome Bioinformatics site (M. musculus domesticus [AJ], M. musculus

castaneus and M. spretus) were downloaded from (Stefflova et al., 2013). We downloaded bird

genome sequences from Ensembl version 80 BioMart (Cunningham et al., 2015): galGal4 for Gallus

gallus, Turkey_2.01 for Meleagris gallopavo, taeGut3.2.4 for Taeniopygia guttata and FicAlb_1.4 for

Ficedula albicollis. Protein-coding gene names and symbols along with associated transcripts

sequences were obtained from FlyBase (dos Santos et al., 2015) for insect species (dmel-r5.46,

dsim-r1.4, dere-r1.3, dyak-r1.3, dana-r1.3 and dpse-r2.30), from Ensembl version 80 BioMart for bird

species and from Ensembl version 59 BioMart for mammalian species (Cunningham et al., 2015).

For M. spretus and M. musculus castaneus, we used the same transcript annotations as for M. mus-

culus. Within the genomes of our designated reference organisms (M. musculus domesticus, G. gal-

lus and D. melanogaster), we defined promoters as the region 0-2 kb upstream of transcription start

site and delineated intergenic regions as regions that did not overlap annotated genes or pro-

moters. Chromatin accessibility tracks used in Figure 5c,d and Figure 5—figure supplement 2 were

downloaded from the UCSC bioinformatics website (Rosenbloom et al., 2015) for M. musculus

domesticus and D. melanogaster, and obtained from (He et al., 2014) for G. gallus. We restricted

our analyses to the sequences or annotations in, or homologous to, the well-defined chromosome

scaffolds of the reference organism. Specific reference chromosomes analyzed are as follows: G. gal-

lus (1–28, Z, W), D. melanogaster (2L, 2R, 3L, 3R, 4, X) and M. musculus (1–19, X, Y).

Homology and evolutionary relationships
We obtained orthology relationships between protein-coding genes using Ensembl COMPARA

(Vilella et al., 2009), matching the Ensembl versions used for protein coding genes for each species

described above. These relationships were used in Figure 3, Figure 3—figure supplement 1,

Figure 5b and Figure 5—figure supplement 1. Homology between genomic segments was

assigned using the LiftOver tool (Rosenbloom et al., 2015), for all analyses presented in Figures 2,

4 and 5 and associated figure supplements, with the exception of the nucleotide-resolution analysis

of GSTF occupancy profiles presented in Figure 4e,f. We used pre-computed chain files from UCSC

matching the genome versions listed above when chains were readily available (Rosenbloom et al.,

2015). When chain files were not available, we built chain files to map the UCSC M. musculus

C57BL/6 mm9 to the genomes of M. musculus domesticus AJ, Mus musculus castaneus and Mus

spretus, as well as to map the Ensembl 80 galGal4 to the genomes of M. gallopavo, F. albicollis and

T. guttata (Figure 1—figure supplement 1). These chains were constructed by following the steps

recommended by UCSC (Supplementary file 2) (http://genomewiki.ucsc.edu/index.php/

Whole_genome_alignment_howto).

For the nucleotide-resolution analysis of GSTF occupancy profiles, we assigned homology rela-

tionships using the chain files, or, in the case of mice strains, using genome mapping tables from

(Stefflova et al., 2013). We filtered the chain files to obtain one-to-one unambiguous mappings by

retaining only highest scoring alignment for each position. These filtered mappings were then used

to transfer data to from any organism onto the corresponding reference genome. Regions in the ref-

erence species genome lacking one-to-one unambiguous mappings were excluded from analysis.

To define evolutionary distances separating species in Myrs, we chose published estimates gener-

ated as homogenously as possible within each lineage using a combination of sequence alignments

and fossil records. All distances between insect species were taken from (Tamura et al., 2004); all

distances between bird species were taken from (Lu et al., 2015); distances between mammalian

species were taken from (Stefflova et al., 2013) and TimeTree (Hedges, 2009).
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Data sources
For RNA-seq analyses (Figure 3; Figure 3—figure supplement 1), sequencing data for the refer-

ence species corresponding to two experiments performed independently by different research

groups, and, when possible, representing different genotypes, were downloaded from public reposi-

tories. For M. musculus domesticus, we used data from (Goncalves et al., 2012; Sugathan and

Waxman, 2013), for G. gallus we used data from (Brawand et al., 2011) and (Coble et al., 2014),

for D. melanogaster we used data from (ENCODE Project Consortium, 2012; Chen et al., 2014).

Other species included were M. musculus castaneus (Goncalves et al., 2012), M. spretus

(Wong et al., 2015), R. norvegicus (Gong et al., 2014), H. sapiens (ENCODE Project Consortium,

2012; Lin et al., 2014), G. gorilla (Brawand et al., 2011), D. simulans (Chen et al., 2014), D. yakuba

(Chen et al., 2014), D. ananassae (Chen et al., 2014), D. pseudoobscura (Chen et al., 2014), M. gal-

lopavo (Monson et al., 2014), A. platyrhynchos (Huang et al., 2013) and F. albicollis

(Uebbing et al., 2013). Specific accession numbers are listed in Figure 3—source data 1.

For ChIP-seq analyses (Figure 4), we downloaded data for FOXA1 in M. musculus domesticus

(C57BL/6) (Stefflova et al., 2013), M. musculus domesticus (AJ) (Stefflova et al., 2013), M. muscu-

lus castaneus (Stefflova et al., 2013), M. spretus (Stefflova et al., 2013) and R. norvegicus

(Stefflova et al., 2013); HNF4A and CEBPA in M. musculus domesticus (C57BL/6) (Stefflova et al.,

2013), M. musculus domesticus (AJ) (Stefflova et al., 2013), M. musculus castaneus

(Stefflova et al., 2013), M. spretus (Stefflova et al., 2013), R. norvegicus (Stefflova et al., 2013),

H. sapiens (Schmidt et al., 2010) and C. familiaris (Schmidt et al., 2010); Twist in D. melanogaster

(He et al., 2011b), D. simulans (He et al., 2011b), D. erecta (He et al., 2011b), D. yakuba (He et al.,

2011b), D. ananassae (He et al., 2011b) and D. pseudoobscura (He et al., 2011b); Giant in D. mela-

nogaster (Paris et al., 2013; Bradley et al., 2010), D. yakuba (Bradley et al., 2010) and D. pseu-

doobscura (Paris et al., 2013). We also gathered data for CTCF in M. musculus domesticus (C57BL/

6) (Schmidt et al., 2012), R. norvegicus (Schmidt et al., 2012), H. sapiens (Schmidt et al., 2012), C.

familiaris (Schmidt et al., 2012), D. melanogaster (Ni et al., 2012), D. simulans (Ni et al., 2012), D.

yakuba (Ni et al., 2012) and D. pseudoobscura (Ni et al., 2012). Accession numbers corresponding

to the specific experimental replicates and control samples are listed in Figure 4—source data 1.

For motif analyses (Figure 5a,b; Figure 5—figure supplement 1), we gathered known position-

weight matrixes from the JASPAR database (Mathelier et al., 2014) and the Fly Factor survey

(Zhu et al., 2011). We focused on the motifs corresponding to Twist and Giant in D. melanogaster,

to CEBPA, HNF4A and FOXA1 in M. musculus domesticus, and on a set of 12 other motifs corre-

sponding to GSTFs conserved across mammals and insects. This set was constructed by download-

ing all Core A vertebrata motifs from JASPAR (Mathelier et al., 2014), identifying those

corresponding to conserved GSTFs with one-to-one orthologs between M. musculus domesticus

and D. melanogaster using COMPARA (Vilella et al., 2009), and filtering the list down to those 12

instances where a position-weight matrix was also described in Fly Factor (Zhu et al., 2011) and

were not already analyzed.

Comparing evolutionary rates
We developed a statistical framework to compare evolutionary rates between lineages, and imple-

mented it in R (Development Core Team, 2011). This framework takes as inputs: measures of pair-

wise cross-species similarity (e.g. correlation of gene expression or sequence conservation), pairwise

cross-species evolutionary distances and lineage labels. Conceptually, the framework estimates both

a statistical significance and an effect size to determine whether rates of evolutionary divergence are

indistinguishable or different between lineages (Figure 1).

In practice, we model evolutionary divergence by an exponential decay in log-linear space. First,

the nls function in R is applied to the log-transformed cross-species similarity data as a function of

evolutionary distances to derive the following linear models:

. a lineage-naı̈ve model that estimates a shared intercept and slope for all the data without
specifying the lineage labels

. a lineage-aware model that estimates a shared intercept for all the data and lineage-specific
slopes based on lineage labels

. lineage-specific models that estimate intercept and slope individually for each lineage
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Second, an R function written in-house to handle nls model structures estimates the significance

level of an ANOVA with a likelihood ratio test comparing the lineage-naı̈ve and the lineage-aware

model. Third, we define the effect size as the predicted absolute difference in similarity between

lineage pairs after 100 Myrs of divergence as estimated from the lineage-specific models. We con-

sider that the framework detected a difference between evolutionary divergence rates when the sig-

nificance level is <0.05 and the effect size is >5%.

We chose to use an exponential decay function because it is the simplest evolutionary model that

fit all our input measures of cross-species similarity reasonably well. We chose to model the expo-

nential decay in log-linear space because we noted that a simple exponential decay in linear space

failed to capture the conservation observed between distant species (mouse versus human at 91

Myrs and dog at 97.4 Myrs) when analyzing the evolutionary dynamics of GSTF binding (Figure 4)

and motif retention (Figure 5). We hypothesize that these data layers likely follow a more complex

decay model, but we did not want to explore this with our current data set to avoid over-fitting.

The power of our statistical framework was assessed by simulating data for two lineages with

measure of cross-species similarity decaying exponentially at different rates over time (Figure 1—fig-

ure supplement 2). We fixed one lineage to decay at set rates: �0.007, �0.005 and �0.003. We

fixed the second lineage to be faster by a range of given differences. Over 1000 simulations, we

sampled two values from a normal distribution centered on the expected values from the set expo-

nential decay rates corresponding to the evolutionary distances shown in Figure 4b, with standard

deviations set at 0.5% or 5%. Our framework detected an absolute rate difference of 0.001 in 39.3%

of simulations and an absolute rate difference of 0.003 in 88.9% of simulations when the standard

deviation was high (5%). When the standard deviation was low (0.5%), our framework detected an

absolute rate difference of 0.001 in 25.7% of simulations and an absolute rate difference of 0.003 in

100% of simulations.

Gene expression evolutionary rates (related to Figure 3)
Analysis of gene expression evolutionary rates was performed in four steps. First, we preprocessed

the raw RNA sequencing data downloaded for public data sources. Second, we quantified the abun-

dance of all annotated transcripts corresponding to protein-coding genes. Third, we estimated

cross-species similarity by correlating transcript abundances at the genome-scale. Finally, we used

these cross-species similarity estimates as input to our statistical framework to evaluate a common

model against a lineage-aware model.

RNA sequencing data were first preprocessed using FastQC (www.bioinformatics.babraham.ac.

uk/projects/fastqc/) and Trimmomatic (Bolger et al., 2014). In order to quantify transcript abundan-

ces, we then used the program Sailfish (Patro et al., 2014) (1) to build transcriptome indices for

each species using the transcriptome sequences described above, using the parameters ’-p 8 -k 20’;

and (2) to quantify transcript abundance using the transcriptome indices with the parameters ’-p 8 -l

"T=PE:O=><:S=U"’ for samples with paired-end reads and ’-p 8 –l "T=SE:S=U”’ for samples with

single-end reads. The bias-corrected transcripts per million (TPM) abundances estimated by Sailfish

were then summed over the transcripts corresponding to the same gene locus.

To estimate cross-species similarities in gene expression levels, for each lineage, we used R

(Development Core Team, 2011) to build a matrix containing the gene expression values for all the

protein-coding genes of the reference organism and their one-to-one orthologs across other organ-

isms within each lineage. We discarded instances where the abundance of a particular gene locus

was less than or equal to 5 TPM. We then calculated the Spearman’s rank correlation for the expres-

sion of all genes between the reference and all other organisms within each lineage and plotted

these correlations as against the evolutionary distance separating each organism pair (Figure 3). We

also repeated the calculations using Kendall’s rank correlation coefficient and Pearson’s product-

moment correlation on log2-transformed expression values (Figure 3—figure supplement 1a,b).

Finally, we calculated Spearman’s correlations among all genes including those with less than 5 TPM

(Figure 3—figure supplement 1c). All these scenarios were evaluated using our statistical frame-

work. None indicated that a lineage-aware model described the data better than a common model.
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GSTF occupancy – segment-resolution (related to Figure 4a–d)
The first step of all our occupancy analyses was to align the ChIP-seq reads to the corresponding

genomes in order to obtain occupancy profiles (Figure 4a). For each accession (Figure 4—source

data 1), the sequencing reads were aligned to reference genomes using Bowtie2 version 2.2.4

(Langmead and Salzberg, 2012) with the parameters ’-very-sensitive -N 1.’ Reads containing the

’XS:’ field (multi-mappers) were removed. Reads having the same start site were presumed to be

PCR duplicates and removed using the ’rmdup’ command of SAMtools version 1.1 (Li et al., 2009).

The filtered reads were then converted to tagAlign format. The tagAlign files corresponding to

CEBPA, HNF4A, FOXA1, Twist and Giant were then processed using 108 different segment-resolu-

tion methods and one nucleotide-resolution method; the tagAlign files corresponding to CTCF were

only processed using the nucleotide-resolution method. The nucleotide-resolution method is

described below and relates to Figure 4e,f.

The aim of our segment-resolution analyses was to examine how robust the evolution of GSTF

binding patterns was across 108 different analysis pipelines (Figure 4a–d). We implemented all these

pipelines, which follow the same general framework and differ only in the choice of 5 parameters,

described and underlined below.

First, the occupancy profiles in the tagAlign files were discretized into candidate occupied seg-

ments using a peak caller algorithm that aims at identifying segments where the ChIP sample is

enriched in reads relative to the control sample. We implemented two peak callers: MACS version 2

(M) (Zhang et al., 2008) and SPP (S) (Kharchenko et al., 2008).

The occupied segments were then selected from the candidate set using a quality filter: stringent

(S), lenient (L) or asymmetric (A). When using MACS2 (Zhang et al., 2008) as a peak caller, lenient

segments were called using a p-value cutoff of 10�5 (default) and merged across replicates when

available using the merge function in BEDTools (Quinlan and Hall, 2010). Stringent segments were

called using a p-value cutoff of 10�22 and intersected across replicates when replicates were avail-

able. The intersection procedure, inspired from (Stefflova et al., 2013), used BEDTools

(Quinlan and Hall, 2010) to implement the following two steps: (1) merge the two replicates and (2)

select the merged segments corresponding to at least one segment in each original replicate. When

using SPP (Kharchenko et al., 2008) as a peak caller, lenient segments were called using a q-value

of 10�2 (default), and merged across replicates when available (Quinlan and Hall, 2010). Stringent

segments were called by selecting all candidate segments assigned to the lowest possible q-value in

the sample, then intersected across replicates when available using the same intersection procedure.

The asymmetric quality filter, inspired by (Bardet et al., 2012; He et al., 2011b), indicates that seg-

ments were called stringently in the reference species and leniently in the other organism.

The coordinates of the occupied segments called in the reference organism were projected onto

the other organism’s genome using the LiftOver tool from the UCSC genome browser

(Rosenbloom et al., 2015) and specifying a sequence similarity filter through the minMatch parame-

ter. We used 3 different minMatch thresholds: stringent (S: 0.95 default), lenient (L: 0.5), and none

(N: 0.001).

After cross-species coordinate projection, a reference subset was chosen to define the set of ref-

erence-occupied segments that would be further analyzed. Three choices were implemented: all ref-

erence-occupied segments independently of whether they map to any other species (A); for each

pair of species, only reference-occupied segments with a homolog in the second species (P); only

reference-occupied segments that had homologs across all the other species considered within the

lineage (S).

The projected coordinates of the reference subset were then overlapped with the coordinates of

the occupied segments in the other species using the intersect function in BEDTools (Quinlan and

Hall, 2010). The overlap requirement was either lenient (L; default parameter of 1 bp) or stringent

(S; required a reciprocal overlap of half of the segments length: ’-f 0.5 -r’).

We systematically executed all combinations of the aforementioned 2 peak callers, 3 quality fil-

ters, 3 sequence similarity filters, 3 reference subsets, and 2 overlap requirements, yielding a total of

108 pipelines. The output of each pipeline was the fraction of reference subset segments that over-

lapped segments occupied in the others species (i.e. segments retaining occupancy between the

two species). This output was used as a cross-species similarity measure for GSTF binding patterns.

We analyzed these similarity measures for 6 pairs of GSTFs (Twist and Giant were each compared to
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FOXA1, CEBPA and HNF4A) using our statistical framework. Two GSTFs were considered to diverge

differently from each other over time when 1) the significance of the test was less than 0.05 and 2)

the effect size was greater than 5%. In summary we found that the choice of parameters greatly

influenced what the evolutionary dynamics of a given GSTF looked like (Figure 4b,c) but that in gen-

eral the rate of divergence of mammal and insects GSTFs were statistically indistinguishable

(Figure 4d). The results of these tests for all GSTF pairs considered across 108 pipelines are

reported in Figure 4—source data 2 and summarized as pie-charts in Figure 4. Observations about

general trends of parameters and evolutionary divergence are further elaborated in Figure 4—fig-

ure supplement 1.

As a control we also conducted an analysis between FOXA1 and CEBPA since FOXA1 lacks data

past 20 Myrs of evolutionary divergence, whereas for all others GSTFs we have broader

coverage across the 100 Myrs range. We applied the same statistical framework to the within-line-

age comparison between FOXA1 and CEBPA and detected that FOXA1 evolves faster than CEBPA

in 74/108 instances. We believe that most of these detected differences are artifacts because the

conservation of binding patterns for FOXA1 and CEBPA is in fact highly correlated throughout all

combinations of parameters when restricting analyses to data points up to 20 Myrs (Pearson’s r =

0.96). We suspect that this type of artifact also affects the results of comparing FOXA1 with Twist or

Giant (Figure 4d).

GSTF occupancy – nucleotide-resolution (related to Figure 4e,f)
In order to compare occupancy profiles directly without discretizing them into occupied segments

and unoccupied segments, we correlated sets of imputed fragment density vectors across species.

The inputs to this method were the tagAlign files described above. To generate these vectors we

first estimated the mean fragment size using a method adapted from (Kharchenko et al., 2008),

whereby the mean fragment size is computed as the number of base pairs of offset between the

positive and negative strands that maximizes the Pearson’s correlation coefficient of their mapped

read density. We used a modified approach that considered only the density of 5’ read start sites on

each strand, rather than the density of the entire read. The first peak of the cross-correlation values

was identified by approximating the first derivative by the finite difference method, smoothing the

derivative values with a Gaussian kernel of bandwidth 10, and identifying the first downward zero-

crossing of the curve. This position was used as the estimated mean fragment size L. We created

imputed fragments by extending each read start site by L base pairs in the 3’ direction. We then cal-

culated a fragment density vector for each chromosome as the number of such imputed fragments

that overlap each genomic position. When multiple replicates were available, replicates were

merged by adding the fragment density vectors.

In order to minimize bias introduced by the presence of unmappable regions, we implemented a

masking scheme that adaptively normalizes each dataset depending on the read length and esti-

mated fragment size of each sequencing run. First, all possible error-free reads of a given length

were generated synthetically and aligned back to the genome using Bowtie2 2.2.4 with the following

parameters: ’-r -N 0 -D 0 -R 0 –dpad 0 –score-min “C,0,-1”’. Any multi-mapping reads with the ‘XS:’

flag were removed and the 5’ and 3’-most positions of the remaining read alignments recorded. The

imputed fragment densities computed from the ChIP data were then normalized by dividing the

density at each position by the fraction of positions within L base pairs upstream that were covered

by the start site (5’ for positive-strand density and 3’ for negative-strand density) of a uniquely-

mapped genomic read. Positions with 0 uniquely-mappable read start sites within L base pairs

upstream were excluded from further analysis.

In order to compare between species, we transferred data from query organisms to the reference

genome using the one-to-one filtered chain files described previously, and calculated the Pearson’s

correlation between the concatenated chromosome vectors of reference and reference-mapped

query data. The evolution of the correlation was modeled and compared using the statistical frame-

work described above.

Carvunis et al. eLife 2015;4:e11615. DOI: 10.7554/eLife.11615 14 of 22

Short report Computational and systems biology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.11615


Genome sequence evolutionary rates (related to Figure 2 and
Figure 5c,d)
We calculated the percentage of randomly sampled segments retaining homology. Within the

genomes of the reference species, we delineated the boundaries of the regions from which to sam-

ple: whole genome (Figure 2; Figure 2—figure supplement 1), intergenic regions in accessible

chromatin and intergenic regions in inaccessible chromatin (Figure 5; Figure 5—figure supplement

2). We used the BEDTools shuffle command (Quinlan and Hall, 2010) to randomize the locations of

5000 segments of 75 bp length within the delineated boundaries using the option ’-noOverlapping’.

The resulting 5000 shuffled segments were then mapped across species using the LiftOver tool with

minMatch parameter 0.001 (Rosenbloom et al., 2015). We then calculated the percentage of seg-

ments that were successfully mapped (i.e. retained homology), excluding segments that mapped to

a region longer than 1000 bp. The entire simulation was repeated 20 times, starting each time with

different sets of 5000 segments. The percentages of segments retaining homology were recorded

for each of the 20 simulations, and averaged for each pair of species. These averages were plotted

and used as inputs for our statistical framework. Varying the minMatch parameter of the LiftOver

tool to 0.5 and segment length to 150 bp allowed us to verify that the observed trends were robust

to sequence similarity thresholds and length sampled (Figure 2—figure supplement 2; Figure 5—

figure supplement 2).

Nucleotide substitution rate within retained genomic segments (related
to Figure 2—figure supplement 1)
The nucleotide sequences of the genomic segments from Figure 2 that retained enough homology

to undergo a pairwise alignment were extracted using the getfasta function of BEDTools

(Quinlan and Hall, 2010). These sequences were then pairwise aligned using EMBOSS suite’s imple-

mentation of Smith-Waterman local alignment (Rice et al., 2000). Default values for gap open pen-

alty (10), gap extend penalty (0.5) and scoring matrix (EDNAFULL) were used to dynamically choose

the best local alignment between reference and query sequences. For each cross-species compari-

son, we calculated the average percent identity of the ungapped alignments of all the segments

across 20 randomizations. This procedure yielded values similar to those described previously for

the mouse / human (Waterston et al., 2002) and D. melanogaster / D. pseudoobscura comparisons

(Richards et al., 2005). The average percent identity of ungapped alignments were used as inputs

for our statistical framework, revealing that a model that incorporates lineage labels significantly

improved fit to the data relative to a common model (P<0.05; Figure 2—figure supplement 1).

Motif evolutionary rates (related to Figure 5a,b)
Using the FIMO tool (Grant et al., 2011) in the MEME suite (Bailey et al., 2009), the genomes of D.

melanogaster and M. musculus domesticus were scanned for matches to experimentally-determined

position-weight matrixes corresponding to the GSTFs of interest. Motif matches were called signifi-

cant according to the default threshold of FIMO, P<10�4. The genomic coordinates of significant

motif matches were mapped to the other species within the same lineage using LiftOver (minMatch

0.001). The corresponding coordinates (Mapped) were then extended by 50 bp, and the resulting

segments were scanned for motif occurrence (Mappedwithmotif). In order to estimate background

expectation, we randomly shuffled the locations of the Mapped segments and scanned these shuf-

fled segments for motifs (ShuffledMappedwithmotif). The percentage of motifs retained relative to

background was calculated as:

F ¼

Mappedwithmotif �ShuffledMappedwithmotif

Mapped
�100

The percentages F were then used as measures of cross-species similarity to estimate whether a

lineage-aware model would describe the evolution of DNA binding motifs better than a common

model (Figure 5—figure supplement 1).
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çalves A, Kutter C,
Brown GD, Marshall
A, Flicek P, Odom
DT

2012 Waves of Retrotransposon
Expansion Remodel Genome
Organization and CTCF Binding in
Multiple Mammalian Lineages

http://sra.dnanexus.com/
?result_type=Study&-
show=25&q=ERP000395

Publicly available at
the Sequence Read
Archive + (Accession
no: ERP000395).

Ni X, Zhang YE,
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Odom DT. 2012. Waves of retrotransposon expansion remodel genome organization and CTCF binding in
multiple mammalian lineages. Cell 148:335–348. doi: 10.1016/j.cell.2011.11.058

Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP,
Mackay S, Talianidis I, Flicek P, Odom DT. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of
transcription factor binding. Science 328:1036–1040. doi: 10.1126/science.1186176

Shibata Y, Sheffield NC, Fedrigo O, Babbitt CC, Wortham M, Tewari AK, London D, Song L, Lee B-K, Iyer VR,
Parker SCJ, Margulies EH, Wray GA, Furey TS, Crawford GE, Akey JM, Crawford GE. 2012. Extensive
evolutionary changes in regulatory element activity during human origins are associated with altered gene
expression and positive selection. PLoS Genetics 8:e1002789. doi: 10.1371/journal.pgen.1002789

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards
S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D. 2005. Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15:1034–1050. doi: 10.1101/gr.
3715005

Stefflova K, Thybert D, Wilson MD, Streeter I, Aleksic J, Karagianni P, Brazma A, Adams DJ, Talianidis I, Marioni
JC, Flicek P, Odom DT. 2013. Cooperativity and rapid evolution of cobound transcription factors in closely
related mammals. Cell 154:530–540. doi: 10.1016/j.cell.2013.07.007

Sugathan A, Waxman DJ. 2013. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-
dependent gene regulation in male and female mouse liver. Molecular and Cellular Biology 33:3594–3610. doi:
10.1128/MCB.00280-13

Sundaram V, Cheng Y, Ma Z, Li D, Xing X, Edge P, Snyder MP, Wang T. 2014. Widespread contribution of
transposable elements to the innovation of gene regulatory networks. Genome Research 24:1963–1976. doi:
10.1101/gr.168872.113

Taft RJ, Pheasant M, Mattick JS. 2007. The relationship between non-protein-coding DNA and eukaryotic
complexity. BioEssays 29:288–299. doi: 10.1002/bies.20544

Tamura K, Subramanian S, Kumar S. 2004. Temporal patterns of fruit fly (drosophila) evolution revealed by
mutation clocks. Molecular Biology and Evolution 21:36–44. doi: 10.1093/molbev/msg236

Uebbing S, Kunstner A, Makinen H, Ellegren H. 2013. Transcriptome sequencing reveals the character of
incomplete dosage compensation across multiple tissues in flycatchers. Genome Biology and Evolution 5:1555–
1566. doi: 10.1093/gbe/evt114

Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E. 2009. EnsemblCompara GeneTrees: complete,
duplication-aware phylogenetic trees in vertebrates. Genome Research 19:327–335. doi: 10.1101/gr.073585.
107

Villar D, Flicek P, Odom DT. 2014. Evolution of transcription factor binding in metazoans — mechanisms and
functional implications. Nature Reviews Genetics 15:221–233. doi: 10.1038/nrg3481

Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson
M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P,
Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P,
Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR,
Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J,
Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes
RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS,
Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED,
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Graves GR, Alström P, Fjeldså J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y,
Yang H, Wang J, Jarvis ED, Gilbert MT, Wang J; Avain Genome Consortium. 2014. Comparative genomics
reveals insights into avian genome evolution and adaptation. Science 346:1311–1320. doi: 10.1126/science.
1251385

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu
XS. 2008. Model-based analysis of ChIP-seq (mACS). Genome Biology 9:R137. doi: 10.1186/gb-2008-9-9-r137

Zhu LJ, Christensen RG, Kazemian M, Hull CJ, Enuameh MS, Basciotta MD, Brasefield JA, Zhu C, Asriyan Y,
Lapointe DS, Sinha S, Wolfe SA, Brodsky MH. 2011. FlyFactorSurvey: a database of drosophila transcription
factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Research 39:D111–
D117. doi: 10.1093/nar/gkq858

Carvunis et al. eLife 2015;4:e11615. DOI: 10.7554/eLife.11615 22 of 22

Short report Computational and systems biology Genomics and evolutionary biology

http://dx.doi.org/10.1038/nature01262
http://dx.doi.org/10.1371/journal.pone.0011471
http://dx.doi.org/10.1101/gr.177840.114
http://dx.doi.org/10.1101/gr.177840.114
http://dx.doi.org/10.1038/nature13992
http://dx.doi.org/10.1126/science.1251385
http://dx.doi.org/10.1126/science.1251385
http://dx.doi.org/10.1186/gb-2008-9-9-r137
http://dx.doi.org/10.1093/nar/gkq858
http://dx.doi.org/10.7554/eLife.11615

