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SUMMARY
All mammals progress through similar physiological stages throughout life, from early development to pu-
berty, aging, and death. Yet, the extent to which this conserved physiology reflects underlying genomic
events is unclear. Here, we map the common methylation changes experienced by mammalian genomes
as they age, focusing on comparison of humans with dogs, an emerging model of aging. Using oligo-capture
sequencing, we characterizemethylomes of 104 Labrador retrievers spanning a 16-year age range, achieving
>1503 coverage within mammalian syntenic blocks. Comparison with human methylomes reveals a
nonlinear relationship that translates dog-to-human years and aligns the timing of major physiological mile-
stones between the two species, with extension to mice. Conserved changes center on developmental gene
networks, which are sufficient to translate age and the effects of anti-aging interventions across multiple
mammals. These results establish methylation not only as a diagnostic age readout but also as a cross-spe-
cies translator of physiological aging milestones.
INTRODUCTION

The wisdom that every year in a dog’s life equates to seven hu-

man years reflects our deep intuition that development and aging

are conserved processes that occur at different rates in different

species. All mammals, whether dog, human, or other creature,

pass through similar life stages of embryogenesis, birth, infancy,

youth, adolescence, maturity, and senescence (Withers, 1992).

Although embryonic developmental programs have been rela-

tively well studied, many of themolecular events governing post-

natal life stages, including those tied to aging, are still unresolved

(Khan et al., 2017). Over the past decade, it has become clear

that a prominent molecular alteration during aging is remodeling

of the DNA methylome, the pattern of epigenetic modifications

whereby methyl groups are present at some cytosine-guanine

dinucleotides (methyl-CpGs) but absent from others (Field

et al., 2018). The methylation states of tens of thousands of

CpGs have been found to change predictably over time,

enabling the construction of mathematical models, known as

‘‘epigenetic clocks,’’ that use these shifting patterns to accu-
rately measure the age of an individual (Hannum et al., 2013;

Horvath, 2013; Petkovich et al., 2017; Stubbs et al., 2017;

Thompson et al., 2017; Wang et al., 2017).

Most questions regarding the relationship between DNA

methylation and mammalian life stage remain unanswered (Fig-

ure 1). While the rate of methylation change appears to depend

on maximal lifespan (Maegawa et al., 2017; Lowe et al., 2018),

whether lifespan is the sole factor in determining how the meth-

ylome progresses with age, or if CpG states are aligned to spe-

cific intermediate milestones in development and aging, remains

unknown. It is also unclear if the major epigenetic changes that

occur with age involve the same or different (or random) CpG

sites in different species. While DNA encoding a highly

conserved ribosomal RNA family shows increasing methylation

over time at the same conserved CpG sites in mice and humans

(Wang and Lemos, 2019), epigenetic clocks trained in humans

have not been strong predictors of age in othermammals (Petko-

vich et al., 2017; Stubbs et al., 2017). Perhaps this is not surpris-

ing, as epigenetic clocks are formulated using regression tech-

niques that select only a small subset of the available CpG
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Figure 1. Physiological versus Epigenetic

Change during Development and Aging

Aging yields similar physiological changes in hu-

mans and dogs, yet these changes occur along

different time scales. Are these different time-

scales reflected in the progression of epigenetic

changes observed during aging? If so, is this

progression consistent with the adage ‘‘one dog

year equals seven human years,’’ or does it sug-

gest a different cross-species alignment of time?
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sites (<500) out of millions of potential subsets that can be used

to measure age equivalently (Field et al., 2018).

Thus far, a major impediment to understanding the relation-

ship between methylation and mammalian life stages has been

our inability to characterize conserved epigenetic features in

different mammals. Most studies of the human methylome use

Illumina methylation arrays, which include oligonucleotide

probes designed to explicitly measure the methylation states

of >450,000 CpG sites (http://www.illumina.com/). Since a

similar array platform has not yet been developed for other spe-

cies, techniques such as whole-genome bisulfite sequencing

(WGBS) have been used, which measure many CpGs without

the need for a specific capture system but at relatively low

coverage per sequencing run (Chatterjee et al., 2017). Other ef-

forts, such as reduced representation bisulfite sequencing

(RRBS), increase coverage for some CpGs but do not guarantee

consistent measurements of the same sites across samples

(Chatterjee et al., 2017). Therefore, what is needed is (1) to select

a suitablemodel species, and (2) within this species, to develop a

CpG capture system that can be more directly aligned with hu-

man methylation arrays.

Domestic dogs provide a unique opportunity to address these

challenges (Gilmore and Greer, 2015; Kaeberlein et al., 2016).

Dogs have been selectively bred by humans for occupation

and esthetics (Ostrander et al., 2017), generating over 450

distinct breeds whose members share morphologic and behav-

ioral traits. Most breeds derive from small numbers or popular

sires, and dogs have been domesticated for only about

15,000–30,000 years (Vonholdt et al., 2010), leading to strong

phenotypic and genetic homogeneity within breeds (Dreger

et al., 2016). Dogs share nearly all aspects of their environment

with humans, including factors associated with aging such as

diet and chemical exposure. They also experience similar levels

of health observation and health care intervention as humans

(Gilmore and Greer, 2015; Kaeberlein et al., 2016). While the

average lifespan differs dramatically across breeds, there is

also considerable variability within some breeds, such as the
2 Cell Systems 11, 1–10, August 26, 2020
Labrador retriever. Despite extensive

phenotypic differences, however, all do-

mestic breeds are members of the same

species with a similar developmental,

physiological, and pathological trajectory

as humans (Gilmore and Greer, 2015;

Kaeberlein et al., 2016). Importantly for

aging studies, dogs accomplish this pro-

gression in many fewer years than hu-

mans, generally fewer than 20. Finally,
epigenetic clocks have been demonstrated in dogs (Thompson

et al., 2017), establishing them as a system for studies of age-

related epigenetic remodeling.

Here, we develop the dog as a model system for epigenetic ag-

ing, using a specifically designed CpG oligo-capture system to

generate high quality methylation data that align directly to human

methylomes. Comparison of each dog methylome to its nearest

human counterparts reveals a conserved but nonlinear progres-

sionof epigenetic changes,with rapid remodeling in puppies, rela-

tive to children, which slows markedly in canine adulthood. We

show that most of the conserved epigenetic changes occur within

specific developmental gene networks, such that a set of 439

conservedCpGsites is sufficient tobuild apan-species epigenetic

clockofaging.Unlikepreviousclocks,whicharepredictive inasin-

gle species only, the conserved developmental clock translates to

multiple species with relative accuracy.

RESULTS

Characterization of Dog Methylomes with Syntenic
Bisulfite Sequencing (SyBS)
Commonly used techniques such as WGBS and RRBS measure

large numbers of random CpGs, but such CpGs are often not

present in regions conserved across species. To enable high

quality evolutionary comparisons of dog methylomes with other

mammals, we performed targeted-bisulfite sequencing to sys-

tematically characterize CpGs in regions of the dog genome

that are syntenic with those measured by Illumina human meth-

ylome arrays. Since Illumina arrays have been used to charac-

terize epigenetic aging in many human studies (Alisch et al.,

2012; Hannum et al., 2013; Horvath, 2013), our goal was to

create a high quality panel of dog methylomes with substantial

coverage of CpGs noted in prior human datasets (Figure 2A).

Our strategy, henceforth called synteny bisulfite sequencing

(SyBS), was designed to capture approximately 90,000 CpGs

of the approximately 232,000 conserved CpGs on the Illumina

array (STAR Methods).

http://www.illumina.com/
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Figure 2. Interrogating Mammalian Methylomes by Syntenic Bisulfite Sequencing (SyBS)
(A) Strategy used to profile and compare CpGmethylation states within blocks of synteny in the mammalian genome. Capture oligonucleotide design: regions of

DNA (blue blocks) characterized by the Illumina 450K methylation array in humans are mapped to their syntenic region in dogs using whole-genome alignments

between the two species. These regions are used to design oligonucleotides (yellow stars) for capture and enrichment of DNA in the second species. Data

generation: A sequencing library is constructed from high quality DNA and bisulfite converted, analogously to WGBS. Syntenic sequences are captured,

sequenced, and aligned to the mammalian genome under study. CpG methylation values are called and then filtered to select those conserved with humans for

further analysis. For more details see STAR Methods.

(B) Pie charts showing representation of targeted genomic regions. Regions exhibiting significant enrichment (p < 10�10) are indicated using asterisks

with * indicating odds ratio > 2.5 and ** odds ratio > 4. UTR, untranslated region; TSS, transcription start site.

(C) Ten dog methylomes were sequenced twice, either with enrichment for syntenic regions (SyBS hybridization) or without enrichment (WGBS). Methylation

values (per CpG site per animal) are shown for SyBS (y axis) versus WGBS (x axis). Sites were considered if they were covered by >5 reads with both SyBS

and WGBS.

(D) Concordance of SyBS values for one canine DNA sample (S1), for which two independent captures were performed. In (C) and (D) the color captures the

density of observations at each point (darker colors represent higher densities), and the r value is the Pearson correlation.

(E) Average coverage of syntenic segments versus total reads in millions, contrasting SyBS with RRBS.
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We applied SyBS to characterize themethylomes of 104 dogs,

primarily consisting of Labrador retrievers and representing the

entire lifespan, from 0.1 to 16 years at the time of blood draw

(Figure S1A; Table S1). Libraries were sequenced to an average

depth of 1633, with nine dogs removed due to lack of coverage.

Captured CpG sites spanned the genome and were enriched for

genomic regions that included exons, transcription start sites,

andCpG islands (odds ratio > 2.5 and p < 10�10 by Fisher’s exact

test, Figure 2B). The methylation values associated with

captured CpGs were similar to those obtained using WGBS

(Pearson correlation r > 0.85, Figure 2C) and showed excellent

replication across independent captures from the same samples

(r > 0.95, Figures 2D and S1B–S1F). As expected, SyBS

achieved substantially higher coverage of syntenic regions

compared with non-targeted reduced representation bisulfite

methods (�13-fold increase, Figure 2E). For comparison, we ob-

tained previously published methylation profiles from the blood

of 320 human individuals aged from 1 to 103 years at the time
of sample isolation (Alisch et al., 2012; Hannum et al., 2013).

Based on these data, we identified 54,469 well profiled CpGs

in both species, thus enabling systematic evolutionary studies

of epigenetic changes during life (STAR Methods).

A Concordant but Nonlinear Relationship between Dog
and Human Age
We observed the highest methylome similarities (Pearson corre-

lation, STAR Methods) when pairing young dogs with young hu-

mans, or aged dogs with older humans. In contrast, the lowest

similarities were obtained when pairing young dogs with old hu-

mans or vice versa (Figure 3A). The relationship between meth-

ylome similarity and age was lost upon permutation (FDR <

0.01; Figure S2A), which indicated that a conserved set of CpG

sites are affected during aging in the two mammalian species.

Notably, this signal was sufficiently strong to arise in an unsuper-

vised methylome-wide analysis without sub-selection of

markers. This result suggested that the conserved methylation
Cell Systems 11, 1–10, August 26, 2020 3
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Figure 3. A Nonlinear Transformation from Dog-to-Human Age

(A) Dog-human methylome similarities (Pearson correlation, blue-red color range) are shown with dogs and humans ranked from youngest to oldest. Data are

lightly smoothed in both dimensions using Gaussian interpolation in matplotlib.

(B) The age of each dog methylome (x axis) is plotted against the average age of the five nearest human methylomes (y axis), 95 dogs are depicted.

(C) Reciprocal plot in which the age of each humanmethylome (y axis) is plotted against the average age of the five nearest dog methylomes (x axis), 320 humans

are depicted.

(D) Logarithmic function for epigenetic translation from dog age (x axis) to human age (y axis). Outlined boxes indicate the approximate age ranges of major life

stages as documented qualitatively based on common aging physiology. Juvenile refers to the period after infancy and before puberty, 2–6 months in dogs, 1–12

years in humans; adolescent refers to the period frompuberty to completion of growth, 6months to 2 years in dogs, approximately 12–25 years in humans;Mature

refers to the period from 2–7 years in dogs and 25–50 years in humans; Senior refers to the subsequent period until life expectancy, 12 years in dogs, 70 years in

humans. Dog life stages are based on veterinary guides andmortality data for dogs (Fleming et al., 2011; Bartges et al., 2012; Inoue et al., 2015). Human life stages

are based on literature summarizing life cycle and lifetime expectancy (Bogin and Smith, 1996; CIA, 2013; Arias et al., 2017). Black dots on the curve connect to

images of the same yellow Labrador taken at four different ages (courtesy of Sabrina and Michael Mojica, with permission) and to images of a representative

human at the equivalent life stages in human years (photos of Tom Hanks drawn from a public machine-learning image repository, Chen et al., 2015).

(E) Mouse-dog methylome similarities shown as in (A).

(F) Data from (E) are summarized by sorting mice according to 0.2-year bins (x axis) and, for each mouse, plotting the average age of the 5 nearest dogs by

methylome similarity (y axis). Points illustrate the mean of each bin and bars represent the 95% confidence interval obtained from bootstrapping.
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changes with age in ribosomal RNA genes, noted previously

(Wang and Lemos, 2019), extend more generally to the greater

mammalian methylome. It contrasts with previous observations

using epigenetic clocks, which did not find strong conservation

across species, likely because these clocks are restricted to

80–300 CpGs, selected for optimal age prediction in humans in-

dependent of other species (Stubbs et al., 2017).

We next investigated whether the conserved methylation

changes in dogs and humans follow a constant rate of change

with age, with the rate constant depending on the lifespan of
4 Cell Systems 11, 1–10, August 26, 2020
each species as suggested previously (Maegawa et al., 2017;

Lowe et al., 2018), or whether there was evidence for amore com-

plex trajectory. For this purpose, we assigned the age of each dog

to the average age of its nearest humans bymethylome-wide sim-

ilarity (STAR Methods). This analysis revealed a monotonic, time-

resolved, nonlinear relationship between dog and human age (Fig-

ure 3B considering the k = 5 nearest humans, Figures S2B–S2G

considering other k values). Similar results were obtained in a

reciprocal analysis assigning each human to its nearest dogs (Fig-

ure 3C), as evidenced by the similarity in fitted functions:
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human_age=17 ln(dog_age)+33 (Figure3B)andhuman_age=16

ln(dog_age) + 30 (Figure 3C). Therefore, we combined the recip-

rocal analyses to generate the single function: human_age = 16

ln(dog_age) + 31 (Figure 3D).

We found that this function showed strong agreement between

the approximate times at which dogs and humans experience

common physiological milestones during both development and

lifetime aging, i.e., infant, juvenile, adolescent, mature, and senior

(Lebeau, 1953; Bogin and Smith, 1996; Bartges et al., 2012) (Fig-

ure 3D). The observed agreement between epigenetics and phys-

iology was particularly close for infant/juvenile and senior stages.

For instance, the epigenome translated approximately 8 weeks

in dogs (0.15 years) to approximately 9 months in humans (0.78

years), corresponding to the infant stage when deciduous teeth

develop in both puppies and babies (Bogin and Smith, 1996;

Bartges et al., 2012). In seniors, the expected lifespan of Labrador

retrievers, 12 years, correctly translated to the worldwide lifetime

expectancy of humans, 70 years (Fleming et al., 2011; CIA,

2013). For adolescent and mature stages, the correspondence

was more approximate, with the epigenome showing faster

changes for dogs, relative tohumans, thanexpectedbyphysiolog-

ical tables (Inoue et al., 2015; Arias et al., 2017) (Figure 2D). Thus,

the canine epigenome progresses through a series of conserved

biological states that align withmajor physiological changes in hu-

mans, occurring in the same sequence but at different chronolog-

ical timepoints during each species’ lifespan.

A conserved nonlinear and weaker epigenetic progression

was also observed by comparing the dog methylomes to those

measured previously from 133 mice (Petkovich et al., 2017) (Fig-

ures 3E and 3F). This weaker effect may be due to the limited

number of mice sampled during the developmental period (Table

S3). Nevertheless, the ability to translate age among these three

diverse mammals indicates that shared physiology may yield

conserved molecular transitions in epigenome remodeling

with age.

Identification of Genes Exhibiting Conserved
Methylation Dynamics with Age
To determine whether the conserved changes were concen-

trated within particular genes or gene functions, we examined

CpG methylation states near 7,942 genes for which orthologs

were present in all three species (dogs, humans, and mice,

STAR Methods). This analysis identified 394 genes for which

methylation values showed conserved time-dependent behavior

across species (empirical p < 0.05, Figure S3; Table S2). To un-

derstand the underlying gene functions, we mapped them onto

the parsimonious composite network (PCNet), a database of

approximately 2 106 molecular interactions capturing physical

and functional relationships among genes and gene products,

in which each interaction has support from multiple sources

(Huang et al., 2018). The genes clustered into five highly inter-

connected network modules (Figure 4), nearly all of which were

enriched for developmental functions. Methylation changes at

these developmental genes were concentrated near transcrip-

tion start sites (Figure S4A) and in CpG islands and shores for

all three species (Figure S4B). Four modules predominantly

increased in methylation with age (FDR < 0.05) and included

modules associated with synapse assembly (18 genes) and neu-

roepithelial cell differentiation (5 genes) and two modules asso-
ciated with anatomical patterning (117 and 69 genes). These

four modules were enriched for polycomb repressor targets,

which are predominantly silenced in adult tissues (Xie et al.,

2013). A fifth module was enriched in leukocyte differentiation

and nucleic-acid metabolism (144 genes) and demonstrated

decreasing methylation with age. We also noted that orthologs

from all five modules were among the most highly conserved in

DNA sequence in the mammalian genome, even accounting

for high sequence conservation of developmental genes in gen-

eral (Figure S5).

Further indication of the importance of developmental gene

modules was observed when calculating dog-human methyl-

ome similarity using CpGs at developmental genes only versus

a comparison using all CpGs except those at developmental

genes (Figure S6; STAR Methods). This comparison showed

that CpGs near developmental genes are both necessary and

sufficient to recapitulate the cross-species alignments of age

observed earlier (Figure 3). Enrichment of age-related methyl-

ation increases in developmental genes has been previously

observed in humans (Rakyan et al., 2010) and mice (Maegawa

et al., 2010). Our findings extend such observations by high-

lighting developmental genes as predominant drivers of the abil-

ity to align mammalian methylomes and in specifying more pre-

cisely where in the developmental gene modules such

changes occur.

Translating Age and Aging Effects Using a Conserved
Epigenetic Clock
Epigenetic clocks have garnered recent interest due to their abil-

ity to translate an individual’s methylome to an accurate predic-

tion of age (Hannum et al., 2013; Horvath, 2013; Petkovich et al.,

2017; Stubbs et al., 2017; Thompson et al., 2017; Wang et al.,

2017). However, they have typically been applied to study meth-

ylome data in one species only, with less success in cross-spe-

cies application (Stubbs et al., 2017). Therefore, in our final anal-

ysis, we examined whether the conserved developmental gene

modules could be used to construct a conserved epigenetic

clock capable of predicting age in multiple mammalian species.

In particular, we formulated a conserved development clock

based on methylation values of the 394 CpGs within the

conserved developmental gene modules we had identified

earlier (Figure 4; STAR Methods). By training in dogs or alterna-

tively mice, this clock could be used to score the age of a dog or

mouse using its methylation profile. Implicit in this analysis was

the translation of a dog methylome to its equivalent mouse age

or vice versa (Figure 5A). For baseline comparison, we also con-

structed single species methylome-wide clocks for dogs and

mice as per the usual procedure (STAR Methods). In this case,

the model was allowed to select the most optimal CpGs for

age prediction from the entire methylome of each species

(Figure 5A).

When training and predicting on individuals within a single

species, the ages measured by the single species methylome-

wide clocks were very accurate (dog rho = 0.99, Figures 5B

and 5D; mouse rho = 0.86, Figures 5C and 5D) relative to the

conserved development clocks (dog rho = 0.81; mouse rho =

0.78; Figure 5D). However, when applying a clock trained in

one species to make predictions in the other, the ages predicted

by the conserved development clock (dogs-to-mice rho = 0.73;
Cell Systems 11, 1–10, August 26, 2020 5
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Figure 4. Conserved Lifetime Methylation Changes Aggregate in Developmental Networks

Genes exhibiting conserved age-related methylation behavior were mapped onto a composite molecular interaction network which was subsequently clustered

to reveal five major modules, labeled according to enriched Gene Ontology functions (STAR Methods). Colors represent the conserved direction of change with

age, with red representing genes that increase in methylation with age and blue representing genes that decrease in methylation with age. Heatmaps show the

conservedmethylation patterns of a random subset of genes in eachmodule. Columns represent distinct orthologs, while rows represent the average values of all

species ranked according to their age in human years and divided into 15 age bins (quantiles). Values are normalized according to the mean and standard

deviation of methylation for each ortholog. The fractional species composition of each bin is visualized in the legend.
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mice-to-dogs rho = 0.71) were substantially more accurate than

those of the single species methylome-wide clocks (dogs-to-

mice rho = 0.22; mice-to-dogs rho = 0.32; Figure 5D). In addition,

clocks based on the developmental gene modules were more

accurate than clocks based onmethylation of ribosomal RNA se-

quences (rho = 0.6 dogs-to-mice and 0.5 mice-to-dogs) (Wang

and Lemos, 2019). When applying the conserved development

clock to mice treated with lifespan-extending interventions

(STAR Methods), the epigenetic ages were 30% less, on

average, than those of control mice (p < 10-6, Figure 5E). These

same results were observed when using the development clock

trained in dogs to predict mouse age (Figure 5F). Together, these

results demonstrate that the methylation states of develop-
6 Cell Systems 11, 1–10, August 26, 2020
mental gene modules can be used to construct a conserved

model of age that is transferable between mammalian species.

In contrast, previous models trained in a single species can

appear to achieve extremely high accuracy when testing in

that same species, but these models do not readily transfer

outside of the original species context.

DISCUSSION

By using targeted oligonucleotide capture (SyBS), we have pro-

duced methylomes of high quality for comparative studies

among dogs and other mammals. Analysis of these data shows

that multiple mammalian species experience conserved
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Figure 5. A Conserved Development Clock Measuring Age and Physiological Aging

(A) Construction of epigenetic clocks. Four clocks are constructed, depending on whether the training data are from dogs or mice and whether the input features

are from all methylome-wide CpGs or from CpGs in conserved developmental modules only. All four cases yield a regression model for predicting age from CpG

markers (STAR Methods).

(legend continued on next page)
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methylation changes during aging, and that the scope of these

changes is methylome-wide. Second, the trajectory of changes

followed by one species as it ages is not necessarily the same

as that followed by another. In particular, dog methylomes

remodel very rapidly in early life compared with the methylomes

of their human counterparts. Our further analysis in this regard

(Figure 3D) suggests that the rate of remodeling is not only deter-

mined by the lifespan of a species but also by the timing of key

physiological milestones. Previously, CpG methylation states in

humans were proposed to exhibit a nonlinear trajectory over

time, with non-constant rates of change (Horvath, 2013). The

analysis here demonstrates a different point, that methylation

changes in one species can be nonlinear with respect to another.

We observe that epigenetic changes during aging center on

highly conserved modules of developmental genes, in which

methylation generally increases with age. Although the enrich-

ment of developmental pathways has been generally observed

in mammals previously (Ciccarone et al., 2018; Field et al.,

2018; Horvath and Raj, 2018), our findings show that specific

changes at these loci translate the effects of age and anti-aging

interventions across species. While the biology of aging has his-

torically been considered as separate from that of development

(Miller and Nadon, 2000; Kowald and Kirkwood, 2016), their

strong association, demonstrated here, supports a model in

which at least some aspects of aging are a continuation of devel-

opment rather than a distinct process.

Limitations and extensions of our findings are as follows. First,

we have used DNA isolated from whole blood, for which age-

dependent shifts in leukocyte populations have been described

(Jaffe and Irizarry, 2014). In particular, previous studies have

found that CD4+ T cells, CD8+ T cells, and B cells decline with

age. Although it is possible that such conserved shifts may influ-

ence our findings, such decline occurs in both dogs (Greeley

et al., 2001) and humans (Jaffe and Irizarry, 2014). Second, our

study has focused exclusively on Labrador retrievers, a popular

and heterogeneous breed for which we could collect large

numbers of unrelated dogs in order to control for population

structure. Distinct breeds exhibiting widely varying lifespans (Gil-

more and Greer, 2015; Kaeberlein et al., 2016) could yield

different age-translation functions.

Further efforts to characterize epigenetic changes across

breeds and species may help to address these and broader

questions. For example, does the timing of epigenetic changes

early in life influence the overall lifespan of a species, or of an in-

dividual within that species? Does modulating the timing of

developmental events affect lifespan? Again, comparisons of

species or sub-species that experience developmental mile-

stones at similar times but with different lifespans (such as

distinct dog breeds) may help address these questions,
(B) Scatterplot of predicted versus actual ages for the dog methylome-wide mod

(C) Scatterplot of predicted versus actual ages for the mouse methylome-wide m

(D) Performance of single species methylome-wide clocks (gray) or conserved

between predicted and actual ages within species or across species.

(E) The conserved development clock distinguishes the effects of lifespan-enha

mouse epigenetic ages are measured (y axis; conserved development clock tra

(x axis). Mean ± 95% confidence intervals shown for each bin and each observa

(F) As for (E) but training the conserved development clock using data for dogs. Fo

each mouse are measured and plotted against actual mouse ages binned in 0.1
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providing critical and complementary data to inform the ongoing

cross-species aging studies (Kaeberlein et al., 2016), including

clinical trials of aging interventions (Urfer et al., 2017).

Finally, our study has demonstrated that the methylome can

be used to quantitatively translate the age-related physiology

experienced by one organism (i.e., a model species like dog)

to the age at which physiology in a second organism is most

similar (i.e., a second model or humans; Figures 3 and 5). These

results enable the methylome to act not only as a diagnostic

readout of age in a single species, as per the usual epigenetic

clock studies, but also for cross-species translation of age and

physiological state of aging. Such translation may provide a

compelling tool in the quest to understand aging and identify in-

terventions for maximizing healthy lifespan.
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Lebeau, A. (1953). L’âge du chien et celui de l’homme Essai de statistique sur
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REAGENT or RESOURCE SOURCE IDENTIFIER

MethylDackel N/A https://github.com/dpryan79/

MethylDackel

Picard Tools (v1.141) N/A https://broadinstitute.github.io/picard/

SAMtools Li et al., 2009 http://www.htslib.org/

BEDtools (v2.25.0) Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

fancyimpute N/A https://pypi.org/project/fancyimpute/

Minfi (R) Aryee et al., 2014 https://bioconductor.org/packages/

release/bioc/html/minfi.html

Impute (R) Hastie et al., 2020 https://www.bioconductor.org/packages/

release/bioc/html/impute.html

Modified beta-mixture quantile dilation

(BMIQ, R)

Horvath, 2013; Teschendorff et al., 2013 PMID: 24138928; Additional File 24

LOLA (R) Sheffield and Bock, 2016 https://bioconductor.org/packages/

release/bioc/html/LOLA.html

preprocessCore (R) Bolstad, 2013 http://bioconductor.org/packages/release/

bioc/html/preprocessCore.html

statsmodel (v0.8.0 Python) Perktold et al. http://www.statsmodels.org/stable/

index.html

SciPy (v1.1.1 Python) Virtanen et al., 2020 https://www.scipy.org/

scikit-learn (v0.19.2 Python) Pedregosa et al., 2011 https://scikit-learn.org/stable/

Cytoscape (v3.7) Shannon et al., 2003 https://cytoscape.org/download.html

clusterMaker2 Shannon et al., 2003 http://apps.cytoscape.org/apps/

clustermaker2

Enrichment Map Merico et al., 2011 http://apps.cytoscape.org/apps/

enrichmentmap
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Trey

Ideker (tideker@ucsd.edu)

Materials Availability
This study did not generate new materials.

Data and Code Availability
The sequencing reads and processed files generated during this study are available at GEO (GSE146920). All original code is freely

available for download at 10.5281/zenodo.3864683.

METHOD DETAILS

Annotations
Reference genomes were downloaded from Ensembl for dog (CanFam3.1), mouse (mm10) and human (hg19). Ensembl Biomart

version 91 was used for gene, 30UTR and 50UTR annotations (Yates et al., 2016). CpG islands, repeat annotations, and chain files

were downloaded from the UCSC Genome Browser (Rosenbloom et al., 2015). CpG shores were designated as regions 2 kilobases

(kb) outside each CpG island, and CpG shelves were designated as regions 2kb outside of CpG shores. Promoters were designated

as regions 2kb upstream and 100 basepairs (bp) downstream of the transcription start sites (TSS) based on gene annotations from

Ensembl (Yates et al., 2016). Whole genes were divided into exonic and intronic sequences. Intergenic regions were then defined as

the remaining regions of the genome after subtracting all other annotated regions. Definitions of one-to-one orthologs were down-

loaded from Ensembl Compara (Vilella et al., 2009) for dogs, humans and mice.

Public Datasets
The following datasets were obtained from Gene Expression Omnibus (GEO) or Sequence Read Archives (SRA) [number of individ-

uals included in study in brackets]:
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d GSE80672 (Petkovich et al., 2017): Methylomes from postnatal mice. Blood, Reduced Representation Bisulfite Sequencing

(RRBS) method. [133]

d GSE36054 (Alisch et al., 2012): Methylomes from human children. Blood, Infinium 450K array. [35]

d GSE40279 (Hannum et al., 2013): Methylomes from human adults. Blood, Infinium 450K array. [285]

d SRP065319 (Thompson et al., 2017): Methylomes from dogs and wolves. Blood, RRBS method [92].
Canine Samples
Information on each dog sample used, including age, breed, and source, is given in Table S1, with the age distribution also provided

in Figure S1A. For samples sourced from NHGRI, domestic dogs were collected with owners’ signed consents in accordance with

standard protocols approved by the NHGRI IACUC committee. Samples were collected at canine-centric events such as dog shows.

Alternatively, owners were supplied with a mail-in kit which included instructions, tubes for blood draws and a general information

sheet requesting the AKC number (when available), pedigree and date of birth. Blood drawswere performed by licensed veterinarians

or veterinary technicians. For samples sourced fromUCDavis, bloodwas collected from privately owned dogs through theWilliamR.

Pritchard Veterinary Medical Teaching Hospital. Owners specified the breed of each dog. Standard collection protocols were re-

viewed and approved by the UC Davis IACUC. DNA was extracted either using the Puregene kit (Qiagen) or using the cell lysis pro-

tocol described by (Bell et al., 1981), followed by phenol/chloroform extraction with phase separation in 15-mL phase-lock tubes (5-

Prime, Inc. Gaithersburg, MD, USA).

SyBS Target Selection
The strategy for syntenic bisulfite sequencing was to base our Illumina Human 450K probe locations were extended 50bp with

respect to the strand of each probe. The resulting locations were mapped to the dog genome using liftOver (Rosenbloom et al.,

2015) using default parameters. After excluding regions that mapped to sex, mitochondrial and unplaced contigs in the dog genome,

we identified approximately 230,000 probes that were syntenic between human and dogs. Hybridization probes were generated to

target these regions using the Roche SeqCap-Epi platform. This process produced an 18.8 megabase sequencing library in dogs,

containing approximately 90,000 CpGs that were also profiled by the Illumina 450K array in humans.

SyBS Library Preparation and Sequencing
We followed the protocol specified by the Roche SeqCap-Epi platform. Briefly, approximately 500ng of lambda phage DNA (bisulfite-

conversion control) was added to 1ug of dog DNA, then sheared to an average of 175bp (Covaris). Sheared DNA was end-repaired,

A-tailed and ligated to barcoded adapters. Adapter-ligated libraries were subjected to bisulfite treatment (Zymo EZ DNAmethylation

lightning kit) following manufacturer’s instructions. Bisulfite-treated libraries were cleaned and amplified using 25 cycles of PCR with

a uracil-tolerant enzyme (Kapa). Libraries were pooled equimolarly into 4-plex or 6-plex hybridization capture reactions to a total of

1ug per reaction. Captured product was PCR amplified (10 cycles). Hybridizations were pooled before sequencing and split among

10 lanes on an Illumina HiSeq 4000 in 2x100bp cycles.

SyBS Data Processing
Reads obtained from sequencing were demultiplexed and their quality was verified using FastQC (Andrews et al., 2010). Reads were

trimmed using TrimGalore (Krueger, 2015) (4bp) then aligned to a bisulfite-converted dog genome (CanFam3.1) using Bismark

(v0.14.3) (Krueger and Andrews, 2011), which produced alignments with Bowtie2 (v2.1.0) (Langmead et al., 2009) with parameters

"-score_min L,0,-0.2’’. Methylation values for CpG sites were determined using MethylDackel (v0.2.1) (Ryan, 2017). Custom Python

scripts using BEDtools (v2.25.0) (Quinlan andHall, 2010) were used to determine on-target reads. Optical PCRduplicates were deter-

mined using Picard tools (v1.141) (Picard Toolkit, 2019) and removed using Samtools (v0.1.18) (Li et al., 2009). Coverage of syntenic

regions was determined using the number of unique on-target reads that were orthologous to humans, divided by the expected

sequencing space. Only CpG sites that were on-target, covered by at least five reads and present across 90% of samples were

selected for further analysis. Samples missing more than 30% of CpGs were removed from further analyses resulting in the removal

of nine dogs. Missing data for selected CpGs were imputed by performing k-nearest neighbors (k = 10) using fancyimpute in Python.

To assess the concordance of methylation values obtained using SyBS with conventional approaches, we also sequenced 10 of the

same dogs using whole-genome bisulfite sequencing (libraries prior to enrichment with SyBS probes). Reads were processed and

aligned with the canine genome as described above. We saw an average Pearson correlation of r = 0.85 among these 10 samples

(range 0.75 - 0.97) (Figure 2C). We also performed independent replicate hybridizations for 6 samples. We saw an average r = 0.97

(range: 0.96 - 0.98) for these technical replicates (Figures 2D and S1B–S1F). We verified that lambda phage DNA exhibited complete

conversion (>99.5%). We tested the significance of the enrichment of our captured sequences and genome region annotation using

the LOLA package (Sheffield and Bock, 2016) in R (version 3.5.1) (R Core Team, 2018). Enrichment tests are performed using Fisher’s

exact tests, with the possible ‘universe’ defined by restriction digestion fragmentation of autosomes in the canine reference genome.

Public RRBS Data Processing
For data generated using Reduced Representation Bisulfite Sequencing (RRBS), methods for alignment and CpG selection were

identical to those described above. Since RRBS fragments are generated using restriction enzymes with specific recognition sites,
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optical PCR duplicates could not be removed and on-target CpGs were not determined. For evolutionary comparative analysis, we

included 133 control mice aged between 3months to 2.5 years (Petkovich et al., 2017). To compare the coverage of syntenic regions

between SyBS and non-targeted bisulfite technology, we used a RRBS study in dogs andwolves (Thompson et al., 2017) (Figure 2E).

Human Methylation Array Data Processing
Illumina Infinium 450K methylome array data were quantile normalized using Minfi (Aryee et al., 2014) and missing values were

imputed using the Impute package (Hastie et al., 2020) in R. These values were adjusted for cell counts as previously described

(Gross et al., 2016). To enable comparisons across differentmethylation array studies, we implemented beta-mixture quantile dilation

(BMIQ) (Horvath, 2013; Teschendorff et al., 2013) and used the median of the (Hannum et al., 2013) dataset as the gold standard. To

mitigate residual batch effects, we selected human samples that clustered closely in the first two principal components using scikit-

learn v0.19.2 (Pedregosa et al., 2011) and verified that such filtering had little effect on the distribution of ages. We also removed

samples for which more than 10% of probes were not adequately detected. This procedure resulted in methylome profiles for

320 humans that could be compared to the SyBS-generated dog methylomes.

Determining Orthologous CpGs
Human Illumina 450K methylation array CpGs were extended by 50bp with respect to the strand using BEDtools and mapped to the

target genome (mouse or dog) using liftOver with ‘‘-minMatch=0.5’’. We verified that the coordinate alignment obtained using 50bp

was identical to that obtained using the exact coordinate (1bp) at ‘‘-minMatch=0.95’’. This procedure allowed us to determine an

exact orthologous region for each humanCpG and each dogCpG.Whenmultiple dogCpGswere assigned to one humanCpGprobe

region, we took the average methylation value of the aligned CpGs in dogs. This procedure resulted in 54,469 dog-human ortholo-

gous CpGs for further analysis. To mitigate batch effects specific to sequencing and/or array platforms, we normalized the

sequencing methylation values using BMIQ and performed quantile normalization using the preprocessCore package in R (normal-

ize.quantiles.use.target function) (Bolstad, 2013).

For dog-to-mouse comparisons, CpGs that were separated by 1bp weremerged into one region using BEDtools. Each region was

then extended by 50bp. The resulting region files were aligned to the target genome using liftOver ‘‘-minMatch=0.5’’. Only regions

that were concordant between the two alignments (i.e., dog to mouse or mouse to dog) were selected for further analysis. CpGs

that were assigned to the same aligned regions were averaged to generate 9,404 bins, consisting of 87,915 CpGs from dogs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dog-Human Pairwise Methylome Similarity
Methylation values of orthologous CpGs were normalized by subtracting the mean and dividing by the standard deviation over in-

dividuals (i.e., z-transformed, separately for each species). The resulting z-values represent the tendency to decrease or increase

relative to the mean of each CpG within a species. Using these values we calculated the pairwise Pearson correlation between

themethylomes of each dog-human pair. Correlation was computed across all orthologous CpG values using the SciPy Python pack-

age (Virtanen et al., 2020), forming a 95 x 320 (dog x human) methylome similarity matrix (Figure 3). We also created a coarsened

version of this matrix, in which the pairwise similarities were averaged over two-year age windows in both species, forming an 8 x

51 (dog x human) methylome similarity matrix (MSA, Figure S2A).

Given this matrix, we evaluated the significance of association between age and methylome similarity using permutations. Specif-

ically, we generated the following two-by-two contingency table:
Ages More Different ADði; jÞ>AD Ages More Similar ADði; jÞ%AD

Methylomes more different MSAði;jÞ%MS Count1 Count3

Methylomes more similar MSAði; jÞ> MS Count2 Count4
whereMSAis themethylome similaritymatrix,ADði; jÞ is the age difference computed as
�� Age bindog �Age binhuman

�� andCount is the

number of occurrences (cells within the MS similarity matrix) for which the table row and column conditions are met. Using these

counts, we calculated the p-value using the one tailed Fisher’s exact test and compared this p-value to that obtainedwhen permuting

the membership of dogs and humans in two-year age bins across 1000 permutations (Figure S2A).

k-nearest Neighbors Analysis
To achieve a robust assignment of reciprocal nearest neighbors, we used a strategy inspired by Context Likelihood of Relatedness

(Madar et al., 2010). Specifically, we z-normalized the MS methylome similarity matrix to form MSZ, as follows:

MSZrowði; jÞ = max

�
0;

MSi;j � MSi�
si�

�
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MSZcolumnði; jÞ = max

�
0;

MSi;j � MS�j
s�j

�

MSZði; jÞ = mean ½MSZrowði; jÞ; MSZcolumnði; jÞ�
k-nearest neighbors were assigned to each dog or to each human with respect to MSZ values. This process was implemented in

Python using scikit-learn.

Fitting the Epigenetic Age Transfer Function
The nearest neighbor analysis was fit using non-linear regression with the SciPy package in Python. Themodel fit was specified using

the following formula:

Dog Age = A � lnðHuman ageÞ + B

Here, ‘‘Dog age’’ was represented by the chronological ages of dogs, and ‘‘Human age’’ was the average age of the nearest human

neighbors with respect to methylome similarity. The converse was performed as well, i.e., dog age was represented as the average

age of the nearest dog neighbors and human age was the chronological age in humans. For the final age transfer function, the co-

efficients (A,B) were estimated by bootstrapping an equal number of both dogs and humans. The standard error was estimated using

1000 bootstraps.

Validation Using Mouse Methylomes
Dog-mouse methylome similarity was calculated identically as for dog-human comparisons. A k-nearest neighbors analysis (as

described for dogs and humans above) was repeated using the orthologous CpGs for pairwise comparisons involving mice. The

mouse methylome data had a highly canalized age distribution which was different from that of the dogs or humans in our study.

That is, mice had been sampled at discrete ages, we therefore visualized these data according to 0.2 year bins (Figure 3F).

Conserved Methylation Changes in Orthologs
We considered 14,652 one-to-one orthologs in dogs, humans and mice that were within 2.5kb of orthologous CpGs. Among these, we

identified 7,934 orthologous genes for which methylation values were available. Methylation values were then logit-transformed; mul-

tiple CpGs assigned to one genewere represented by the averagemethylation value.We assigned to each ortholog a ‘methylation con-

servation score’ using the following procedure. First, the age of each dog or mouse individual was translated to the equivalent human

age using the epigenetic age translation functions built using the k-nearest neighbors analysis. We ranked all individuals according to

their age in human years and divided this ranking into 15 quantile bins. Logit-transformedmethylation valueswere averagedwithin each

bin and species. For each gene and species we calculated the Spearman correlation between the gene’s methylation values and age.

Genes were then ranked by signðcorrelationÞ � � log10ðcorrelationp valueÞwithin each of the three species.We computed the Euclidean

norm of the three ranks and sought genes with very low norms (for which methylation was consistently among the most increasing with

age across species) or with very high norms (for which methylation was consistently among the most decreasing with age across spe-

cies). Significance was determined using a two-sided empirical p-value < 0.05, yielding 394 genes.

We examined methylation within gene bodies by calculating the distance of each CpG relative to the transcription start site and

normalized these distances by the gene length. We then grouped CpGs into 10 bins and calculated the average methylation using

a rolling window (window = 3) among genes grouped according to their conservation status: conserved increasing or decreasing

methylation with age and not conserved. We then calculated the difference between the oldest 20% and youngest 20% for each

species. We repeated this analysis using all one-to-one orthologs or grouped according to their developmental gene status (Fig-

ure S4A). To test enrichment of genomic regions for conserved developmental genes, for each developmental gene, we annotated

its underlying CpGs according to their genomic region (TSS, intergenic, 50UTR, repeats, exonic, 30UTR, intronic, CpG shelves, CpG

shores, CpG islands). We then tested for enrichment using the Fisher’s exact test between conserved and not conserved develop-

mental genes using a p-value cutoff of < 0.005 for each species (Figure S4B).

Network Analysis
Wedownloaded the PCNet parsimonious composite human functional interaction network from (Huang et al., 2018) and subselected

gene orthologs with significantly conserved methylation trajectories (see above) resulting in a subnetwork with 355 nodes and 2003

edges. We visualized the network using Cytoscape (Shannon et al., 2003) (version 3.7) and performed community detection using

clusterMaker2 (Shannon et al., 2003). To annotate modules, we performed functional enrichment using a hypergeometric test for

each term within the Biological Process branch of the human Gene Ontology (GO) (Ashburner et al., 2000) and adjusted for false-dis-

covery rate using a very strict Benjamini-Hochberg procedure (FDR < 0.001) implemented using statsmodel in python. Significant GO

terms were clustered according to gene-set similarity using Enrichment Map (Merico et al., 2011), and gene modules were clustered

according to their Jaccard overlap, revealing high-level functional categories (Figure 4).
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Developmental Genes Analysis
Genes were ranked according to their methylation conservation score (see above) and subdivided into 25 evenly spaced bins, sepa-

rating genes with significantly conserved decreases or increases inmethylation for a total of 27 bins.We then obtained PhyloP (Siepel

et al., 2006) sequence conservation scores according to the orthologous CpGs assigned to each gene. Finally, we averaged the Phy-

loP scores in each methylation conservation score bin, estimating the 95% confidence interval by bootstrapping (Figure S5). We as-

sessed the significance of the interaction between methylation conservation score and developmental gene status using ANOVA.

We restricted to orthologous CpGs profiled across dogs, humans andmice (6,906 CpGs) that were within 2.5kb of the gene bodies

of all orthologous genes (‘all CpGs’). From this set, we identified CpGs near development genes (‘devCpGs’); we also controlled for

the number of CpGs with 100 randomly-sampled subsets of CpGs that were equal in size from those not near developmental genes

(‘not devCpGs’). We calculated themethylome similarity (as described above) based on these CpG subsets for pairwise comparisons

of species (dog and human, dog andmouse). For each pairwise comparison (Species 1, Species 2), we identified the 5-nearest neigh-

bors in Species 2 for each individual of Species 1, then binned the actual age of Species 1 into five discrete bins and calculated the

average neighbor age for each bin with the 95% confidence interval estimated by bootstrapping (Figure S6).

Conserved Development Clock Analysis
Dog and mouse epigenetic clocks were built with Elastic net (scikit-learn in Python) using either methylome-wide CpG values

(�90000 CpGs across both species) or 394 CpG values associated with developmental gene modules (Figure 5). We refer to the

ages predicted from this model as ‘‘epigenetic ages’’. Hyperparameters were tuned using five-fold cross validation in the dog

data. Since some other clocks in the literature use ten-fold cross validation, we also tested the parameters selected using a ten-

fold cross-validation procedure. We found an increase in median absolute error (MAE) in this case, thus we proceeded with five-

fold. Performance of the final model was assessed by Spearman correlation of actual versus epigenetic age (output of the Elastic

net model) for 11 dogs which had not been used for training, and for the control mice described above. As controls in Figures 5E

and 5F, we built 100 control clocks using 100 randomly sampled sets of 394 CpGs that had been profiled in dogs and mouse but

were not in developmental genemodules. For analysis involving lifespan-enhancing intervention mice, we obtained DNAmethylation

data profiled from whole blood from (Petkovich et al., 2017), processed as described above. We removed GHRKO from further anal-

ysis, as principal component analysis using the 394 conserved CpGs revealed clustering due to treatment. All remainingmice used in

this analysis are described in Table S3.We applied the epigenetic clock, trained inmice or trained in dogs, and evaluated the effect of

longevity-enhancing interventions using a log-likelihood ratio test.
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