
Cellular organization is thought to be fundamentally 
modular1,2. At the molecular level, modules have been 
variously described as groups of genes, gene products or 
metabolites that are functionally coordinated, physically 
interacting and/or co-regulated1–7. A pioneering per-
spective1 on modular cell biology described a module as 
a distinct group of interacting molecules driving a com-
mon biological process — for example, the ribosome is 
a module that synthesizes proteins. Modules, in essence, 
are functional building blocks of the cell1–7.

In an effort to develop a complete map of biologi-
cal modules underlying cellular architecture and func-
tion, large networks of intermolecular interactions are 
being measured systematically for humans and many 
model species8–16. Such networks include physical asso-
ciations underlying protein–protein, protein–DNA or 
metabolic pathways, as well as functional associations, 
including epistasis and synthetic lethality relationships 
between genes, correlated expression between genes, 
or correlated biochemical activities among other types 
of molecules (Supplementary information S1 (table)). 
Numerous approaches have been developed to mine 
such networks for identifying biological modules, 
including methods for clustering interactions and 
those based on topological features of the network 
such as degree and betweenness centrality (as reviewed 
in REFS 5–7). These approaches are based on the prem-
ise that modular structures such as protein complexes, 
signalling cascades or transcriptional regulatory cir-
cuits display characteristic patterns of interaction5–7. 
They have been extremely powerful for elucidating 

molecular machineries underlying physiological and 
disease phenotypes5–7,17–19.

Nonetheless, many challenges confound the inter-
pretation of biological networks and their embedded 
modular structures. A first challenge relates to the 
sheer complexity of the problem at hand: it is not yet 
clear how to transform data for thousands of molecular 
interactions into functionally coherent models of cel-
lular machinery. Second, technological biases in high-
throughput approaches20–22 can compromise signal 
accuracy. Experimental artefacts, variability in cover-
age across data sets, sampling bias towards well-studied 
processes, limitations in screening power and inher-
ent sensitivities in various assays can yield false posi-
tives and false negatives in interaction data23–26. Third, 
individual high-throughput experiments measuring a 
subset or type of interactions (for example, protein–
protein or protein–DNA interactions) simply cannot 
expose the full interaction landscape of a cell. Finally, 
as molecular networks are commonly assembled in sin-
gle, static experimental conditions, they overlook the 
inherently dynamic nature of molecular interactions, 
which can be extensively rewired during physiologi-
cal or environmental shifts10,27,28. Hence, current net-
work models reveal only partial and static snapshots 
of the cell.

A key strategy to address these challenges is data 
integration. In recent years, a rich collection of inte-
grative methods has emerged for the identification of 
network modules of high quality and broad coverage, 
and of context-specific dynamics. Here, we review 
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Epistasis
The phenomenon whereby the 
function of one gene affects 
the phenotype (for example, 
growth) of another gene in a 
non-additive manner.

Synthetic lethality
An extreme case of negative 
genetic epistasis in which the 
mutation of two genes in 
combination, but not 
individually, causes a lethal 
phenotype.
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Abstract | A central goal of systems biology is to elucidate the structural and functional 
architecture of the cell. To this end, large and complex networks of molecular interactions 
are being rapidly generated for humans and model organisms. A recent focus of 
bioinformatics research has been to integrate these networks with each other and with 
diverse molecular profiles to identify sets of molecules and interactions that participate 
in a common biological function — that is, ‘modules’. Here, we classify such integrative 
approaches into four broad categories, describe their bioinformatic principles and review 
their applications.
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Degree
The number of interactions 
(edges) that a molecule (node) 
has in a network.

Betweenness centrality
A statistical intuition of how 
‘central’ the status of a given 
molecule (node) or interaction 
(edge) is within a network.  
This is inferred by the fraction 
of shortest paths between  
all pairs of nodes that pass 
through a particular node  
or edge.

Network topology
The overall arrangement  
of nodes and edges in a  
given network.

these integrative approaches, highlighting their logical 
underpinnings and biological applications. We classify 
integrative module discovery methods into four broad 
categories: identification of ‘active modules’ through the 
integration of networks and molecular profiles, identi-
fication of ‘conserved modules’ across multiple species, 
identification of ‘differential modules’ across different 
conditions and identification of ‘composite modules’ 
through the integration of different interaction types. 
Together, these four categories encompass a wide range 
of network integration strategies and available data 
types. An illustrative poster29 titled ‘Integrative Systems 
Biology’ was previously published and is recommended 
as an accompanying guide.

Identification of active modules
One of the most successful integrative approaches has 
been to overlay networks with molecular profiles to 
identify ‘active modules’. Molecular profiles of tran-
scriptomic, genomic, proteomic, epigenomic and other 
cellular information are rapidly populating public data-
bases (Supplementary information S1 (table)). As these 
profiles capture dynamic and process-specific infor-
mation that is correlated with cellular or disease states, 
they naturally complement interaction data, which are 
primarily derived under a single experimental condi-
tion. Computational integration of network and ‘omics’ 
profiles has thus become a popular strategy for extract-
ing context-dependent active modules, which mark 
regions of the network showing striking changes in 
molecular activity (for example, transcriptomic expres-
sion) or phenotypic signatures (for example, mutational 
abundance) that are associated with a given cellular 
response4,30–38 (FIG. 1). These regions have alternatively 
been described as network hotspots39,40 or responsive 
subnetworks41–43.

Many computational techniques have been developed 
that automate the large-scale identification of active 
modules in an unbiased manner. Several of these meth-
ods have been packaged as publicly available application 
tools (TABLE 1). These methods generally fall into three 
classes, as described in the following subsections. Given 
the rapid emergence of integrative methodologies, some 
effort has been made to compare their accuracy (pre-
cision), sensitivity (recall) or computational efficiency 
within individual method classes44–46. However, unbi-
ased comparisons across different classes of methods 
using uniform data metrics will need to be undertaken 
comprehensively47.

Significant-area-search methods. The first class 
of methods, themed SigArSearch (significant area 
search)31,33,48 was previously reviewed43. Many of these 
methods33,41,44,48–56 descend from an early formulation, 
jActiveModules48, (also implemented as an application 
tool through the network analysis and visualization 
platform, Cytoscape57 (TABLE 1)), which was the first to 
frame the active modules search task as an optimiza-
tion problem. SigArSearch methods invoke three com-
mon procedural steps for module discovery (FIG. 1). First, 
network nodes (molecules) and/or edges (interactions) 

are annotated with scores that quantify molecular activ-
ity, which is measured using molecular profiles such as 
gene expression levels (the most common data choice 
in such applications). Next, a scoring function is formu-
lated to compute an aggregate score for each subnetwork 
that reflects the overall activity of member nodes and 
interactions. Subsequently, a search strategy is devised 
to identify subnetworks with high scores, which mark 
active modules.

Scoring and searching for active modules present a 
range of computational considerations and implementa-
tions43. Different scoring functions have assumed scores 
on network nodes48 or edges41,58 or both59; or constrained 
scores by network topology56 or signal content44; or are 
prioritized by high-scoring ‘seed’ nodes60, including 
using strategies for computational colour coding of ‘seed’ 
paths51,55. Searching for active modules has proven to be 
a computationally difficult problem48. Hence, so‑called 
heuristic solutions (for example, based on greedy52,61–63, 
simulated annealing48 or genetic64 algorithms (BOX 1)) 
optimize computing time by recovering high-scoring 
subnetworks without necessarily finding the maximally 
scoring subnetworks. Nevertheless, exact methods that 
guarantee the detection of maximally scoring subnet-
works, albeit at higher computational expense, have been 
programmed to run in fast timescales44,45,65,66.

Diffusion-flow and network-propagation methods. The 
second group of methods for active module identifi-
cation emulates the related concepts of diffusion flow 
and network propagation36,37,45,67–72. Analogous to fluid 
or heat flow through a system of pipes, network ‘flow’ 
is ‘diffused’ from nodes that are implicated in molec-
ular profiles, such as differentially expressed genes or 
known disease genes. The flow reaches outwards along 
network edges, allowing subsequent identification of 
active modules as those subnetworks that accumulate 
maximum flow.

Figure 1 | Identifying active modules. a | Schematic 
representation of active modules inferred through the 
integration of biological networks and cellular state 
profiles. b | Common procedural workflow involved in 
active module identification. c | An active module of 
chromatin remodelling genes (highlighted in bold text) 
that were found to be mutated in clear-cell renal-cell 
carcinoma72. The module was identified through 
integrative analysis of multiple omics data sets using a 
combination of bioinformatics approaches (the TieDIE 
extension of HotNet, and PARADIGM). The module 
highlights several regulatory links connecting mutated 
genes to transcriptionally active targets. Each gene is 
depicted as a set of concentric rings representing various 
levels of biological information, and each ‘spoke’ in a ring 
pertains to a single patient sample. From the periphery 
inwards, the rings indicate PARADIGM-inferred levels of 
gene activity, mRNA expression levels, mutational 
abundance and correlation of gene expression or activity 
to mutation events in chromatin-related genes. Part c is 
reproduced, with permission, from REF. 72 © (2013) 
Macmillan Publishers Ltd. All rights reserved.
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Recently, network propagation methods such as 
those implemented in the bioinformatics tools HotNet 
and TieDIE (TABLE 1) have been used for network map-
ping of cancer mutations. These methods have proven 
particularly valuable for discovering mutational hot-
spots in human cancers67,70–74. For example, in one 
implementation of the application tool HotNet67, sig-
nificantly mutated pathways in glioblastomas and 
adenocarcinomas were identified through network 
propagation of associated cancer mutation profiles. 
Here, diffusion flow was run on a human protein–pro-
tein network that was seeded from known cancer genes 
to map their global neighbourhood of interaction. This 
operation translates to computing the ‘influence’ of can-
cer genes on all remaining genes in the network (BOX 1). 
The resulting ‘influence network’ (representing the full 
set of network connectivities surrounding cancer seed 
genes) was subsequently partitioned into weighted 
subnetworks. Thresholds were applied to these sub-
networks according to either the number of patients in 
which they were mutated, or by the average number of 
somatic mutations that were associated per interacting 
gene pair in a given subnetwork, as informed by tumour 
sequence profiles. The highest weighted subnetworks 
marked significantly mutated cancer pathways. Such 
strategies have become increasingly popular and data-
rich owing to easy availability of genome sequence and 
other ‘omics profiles in public repositories such as The 
Cancer Genome Atlas (TCGA)38,71,72.

Additionally, numerous propagation-based tools 
such as RegMod45, ResponseNet75 and NetWalker76 
(TABLE 1) permit functional network analysis informed 
by transcriptomic data. For example, ResponseNet 
traces information flow from upstream response 
regulators through signalling and regulatory path-
ways embedded in integrated protein networks to 
provide pathway-based explanations for downstream 
transcriptional changes that are captured in gene  
expression profiles.

Network propagation methods are particularly 
suitable for annotation, ranking or clustering of genes 
(such as disease genes) based on affiliations formed by 
network connectivity. In these situations, deciphering 
the precise architecture of a network is usually not a 
primary goal. Rather, the main motivation behind net-
work propagation is to take advantage of the general 
functional proximity of genes to one another. Hence, 
the phrase ‘network smoothing’ is often used to describe 
such strategies.

Clustering-based methods. The third group of methods 
uses simultaneous clustering of network interactions and 
the conditions under which these interactions are active, 
in a concept termed ‘biclustering’46. Clustering based 
on network topology alone has proven instrumental in 
defining basic principles of modular network organiza-
tion7,77,78. Biclustering algorithms further expand these 
capabilities by evaluating both network connectivity 
and the correlation of omics-based performance across 
multiple samples or conditions36,46,79,80. A quantita-
tive assessment of biclustering methods was recently 
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Metabolic flux
The flow of chemicals  
through any metabolic  
reaction (for example,  
an enzymatic reaction).

presented46. Many biclustering methods have been 
adapted as application tools (TABLE 1), such as SANDY81, 
SAMBA82 and cMonkey69 (BOX 1). These tools permit 
multiplexed data analysis by interpreting global network 
topology and statistics in contexts of transcriptional 
regulatory information, differential expression profiles 
across multiple conditions and/or other types of biomed-
ical information (such as phenotypic, sequence-based,  
literature and/or clinical information).

Modules derived through such a broad range of data 
types, covering multiple levels of biological regulation, 
are providing increasingly comprehensive interpreta-
tions of biological systems. For example, methods have 
also been developed for identifying active modules 
within metabolic networks, in which omics or regula-
tory data are used to constrain the allowable metabolic 
fluxes through the reactions in the network. High-flux 
reactions (edges) are clustered together and reported as 

Table 1 | Some recent bioinformatics tools for module extraction through network integration

Tool URL Refs

Active-module detection through network projection of omics data

jActiveModules http://apps.cytoscape.org/apps/jactivemodules 48

MATISSE http://acgt.cs.tau.ac.il/matisse 165

PinnacleZ http://apps.cytoscape.org/apps/pinnaclez 62

GXNA http://stat.stanford.edu/~serban/gxna 52

BioNet http://bionet.bioapps.biozentrum.uni-wuerzburg.de 166

COSINE http://cran.r-project.org/web/packages/COSINE/index.html 104

SANDY http://sandy.topnet.gersteinlab.org 81

HotNet http://ccmbweb.ccv.brown.edu/hotnet 67

PARADIGM http://sbenz.github.com/Paradigm 70

MEMo http://cbio.mskcc.org/memo 73

Multi-Dendrix http://compbio.cs.brown.edu/software 37

RegMOD http://www.biomedcentral.com/1471‑2105/11/26/additional 45

NetWalk and FunWalk http://netwalkersuite.org 76

ResponseNet http://bioinfo.bgu.ac.il/respnet 75

ClustEx http://www.mybiosoftware.com/pathway-analysis/5495 42

SAMBA http://acgt.cs.tau.ac.il/samba 82

cMonkey http://bonneaulab.bio.nyu.edu/biclustering.html 69

COBRAv2.0 http://opencobra.sourceforge.net/openCOBRA/Welcome.html 85

TieDIE https://sysbiowiki.soe.ucsc.edu/tiedie 167

Network comparisons across species to identify conserved modules

PathBLAST http://www.pathblast.org 114

NetworkBLAST http://www.cs.tau.ac.il/~bnet/networkblast.htm 168

NetworkBLAST‑M http://www.cs.tau.ac.il/~bnet/License-nbm.htm 116

IsoRankN http://groups.csail.mit.edu/cb/mna 169

Graemlin http://graemlin.stanford.edu 119

NeXus http://csbio.cs.umn.edu/neXus/help.html 157

Multi-species cMonkey http://bonneaulab.bio.nyu.edu/biclustering.html 158

Differential analysis of interaction networks to identify dynamic modules

DDN http://www.cbil.ece.vt.edu/software.htm 170

DNA http://www.somnathdatta.org/Supp/DNA 171

Integration of diverse types of interaction networks to identify composite modules

PanGIA http://prosecco.ucsd.edu/PanGIA 147

BLAST, basic local alignment search tool; ClustEx, gene clustering and extending; COBRA, constraints-based reconstruction and 
analysis; COSINE, condition-specific subnetwork; DDN, differential dependence networks; DNA, differential network analysis 
(definition applies to this table only); Graemlin, general and robust alignment of multiple large interaction networks; GXNA, gene 
expression network analysis; MATISSE, module analysis via topology of interactions and similarity sets; MEMo, mutually exclusive 
modules in cancer; Multi-Dendrix, multiple pathway de novo driver exclusivity; NeXus, network cross(X)-species search; PanGIA, 
physical and genetic interaction alignment; PARADIGM, pathway recognition algorithm using data integration on genomic 
models; RegMOD, regression model with a diffusion kernel; SAMBA, statistical algorithmic method for bicluster analysis; SANDY, 
statistical analysis of network dynamics; TieDIE, tied diffusion through interacting events.
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active modules. We refer the reader to recent reviews83,84 
on integrative methods for modelling of metabolic net-
works through omics-based constraints. A version of the 
application tool COBRA (constraint-based reconstruc-
tion and analysis) (TABLE 1) permits omics-constrained 
analyses of genome-scale metabolic networks to predict 
feasible metabolic phenotypes and relevant modules 
under a given set of conditions85.

Applications of active modules
Active modules have been identified using a wide range 
of interaction types (for example, protein–protein, regu-
latory and metabolic interactions) and ‘omics’ profiles 
(for example, gene expression profiles, mutation status 
data, RNA interference phenotypes and other cellular-
state data), any combination of which may be applied for 
a single module-finding application. See Supplementary 
information S1 (table) for tools and databases related to 
various types of interactions and omics data.

A number of studies have interpreted omics pro-
files in the context of protein–protein interaction 
networks34,39,48,50,62,67,70,72–74,80,86. For example, recent 

work72 established a comprehensive network view 
of molecular pathways altered in clear-cell renal-cell 
carcinoma (ccRCC) by analysing a diverse cohort of 
TCGA-derived omics data that included gene expres-
sion, genome mutation and methylation profiles in 
conjunction with human protein–protein interactions. 
The HotNet and PARADIGM methods were used to 
identify phosphoinositide 3‑kinase (PI3K) pathways 
and SWI/SNF chromatin remodelling complexes as 
cancer-relevant active modules (FIG. 1c). Moreover, 
aberrant remodelling of cellular metabolism was 
repeatedly found to affect tumour stage and sever-
ity. Similarly, using the ResponseNet program, yeast 
networks of protein–protein, metabolic and protein– 
DNA interactions were analysed simultaneously 
with mRNA-profiling data to discover pathways that 
respond to α-synuclein toxicity87.

Another study applied a method based on 
SigArSearch62 (TABLE 1) to detect pathways of protein–
protein interactions that show dysregulated expression 
in human breast cancer62. Compared with individual 
cancer-gene markers, these expression-based modules 

Box 1 | Common bioinformatics themes applied in integrative module-finding approaches

Simulated annealing
Simulated annealing is an optimization procedure that mimics the process undergone by misplaced atoms in a metal 
when it is heated and then slowly cooled. It was the first heuristic approach to be applied to the active module search 
problem48. To begin, a connected subgraph is chosen at random and scored as the average value of its nodes, taken from  
a molecular profiling experiment. Over many iterations, nodes are added or removed from this subgraph, and these 
changes are retained if they result in a connected subgraph with a better score. The changes may also be retained if they 
lower the score, with a probability that scales with the ‘annealing temperature’. With each iteration, the temperature  
is lowered such that the accepted changes are increasingly likely to be beneficial. The final high-scoring subgraph is 
returned as the most ‘active module’.

Greedy algorithms
Greedy algorithms are heuristic optimization algorithms that make the locally optimal choice at each stage. For example, 
in one greedy-based scheme52, subnetworks were iteratively expanded from high-degree nodes either until the 
aggregate subnetwork score surpassed a predefined threshold or until the subnetwork size was saturated. Alternately, 
only nodes within a fixed radius of the seed node were aggregated62. In a greedy variant of simulated annealing, only a 
limited number of negative-scoring nodes (inactive nodes) was added in each iterative expansion step61.

Genetic algorithms
Genetic algorithms mimic natural selection among members of a population and involve the iterative computation of 
various combinations of solutions; those with the best fitness scores are selected. In one hotspot-detection method based 
on genetic algorithms64, node fitness was estimated using both molecular activity and network topology.

Exact methods
Exact methods are guaranteed to identify a maximally scoring subnetwork. They often have long run times although 
some have been made quite efficient44,45,65,66. One such method44 allowed a rapid recovery of modules by transforming the 
subnetwork search task into a well-known prize-collecting Steiner trees (PCST) problem and solving it using integer 
linear programming (ILP).

Network propagation
Network propagation methods (also known as network smoothing methods) propagate network flow from selected 
nodes to identify subnetworks that accumulate the maximum ‘flow’ (that is, influence from neighbouring nodes).  
In one such method67, an ‘influence graph’ was generated by releasing flow from cancer genes (that is, source (s)) along 
interaction edges. The influence graph was decomposed into component subnetworks of high network connectivity and 
activity (mutational frequency).

Biclustering methods
These methods allow the simultaneous clustering of interaction data and omics profiles to identify co‑regulated or 
correlated modules. In a biclustering method, cMonkey69, P values of correlated expression, sequence similarity and 
network topology were measured and an aggregate P value was defined as the joint membership probability. Using 
simulated annealing, nodes with high joint membership values (that is, ≈ 1) were iteratively aggregated; those with low 
values (that is, ≈ 0) were dropped; whereas those with intermediate values were added with decreasing probability per 
iteration (heat gradient) to identify hotspots. 
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Hubs
Molecules with the highest 
number of interactions  
(degree) in a network.

Orthologous
Refers to the evolutionary 
relationship between two 
genes in two species that have 
descended from a common 
ancestor. Such genes are 
denoted as orthologues.

showed greater accuracy in distinguishing metastatic 
from non-metastatic breast cancers, thus demonstrat-
ing the superior power of module-based biomarkers for 
disease prognosis. Alternatively, co‑clustering of RNA 
interference data with protein–protein networks iden-
tified hepatitis C virus (HCV)-responsive modules in 
humans and established a role for the human ESCRT-III  
complex as an infection-permissive host factor 80. 
Other discoveries of omics-derived modules using 
protein interaction knowledge have spanned a variety 
of model organisms, including metabolism in yeast48, 
drug response in Mycobacterium tuberculosis50, ageing 
in Drosophila melanogaster88, ageing56 and embryogen-
esis34 in Caenorhabditis elegans, and cellular responses 
to inflammation86, HIV infection61 or tumour necrosis 
factor (TNF)-mediated stress89 in humans.

Another prominent group of applications relates to 
the integration of omics profiles with protein–DNA 
interaction networks for the identification of active 
regulatory pathways4,81,90. For example, co‑clustering of 
protein–DNA interactions and multi-condition gene 
expression profiles in yeast demonstrated widespread 
dynamic remodelling of transcription networks in 
response to diverse environmental stimuli81. It further 
showed that whereas a few transcriptional complexes 
act as constant ‘hubs’ of transcription, most appear tran-
siently under particular conditions. In another study, 
differentially expressed arsenic-responsive pathways 
were extracted through the overlay of transcriptional 
profiles on yeast protein–DNA networks using the 
jActiveModules platform90. It was found that tran-
scriptional data revealed important transcriptional 
complexes in gene-regulatory networks but not in meta-
bolic networks, whereas phenotypic profiles (of arsenic 
sensitivity) mapped more cohesively onto metabolic 
networks.

The identification of active modules has also been 
applied to metabolic networks50,90–92. Constraint-based 
methods for analysing metabolic networks, includ-
ing the widely exploited flux balance analysis (FBA) 
method, predict steady-state distributions of metabolic 
fluxes based on various physico-chemical constraints, 
such as rates of cellular growth and bioenergetics93. A 
recent variation on these methods adopts an integra-
tive framework, whereby metabolic flux predictions are 
guided by omics or regulatory information (as reviewed 
in REFS 83,84). For example, a genome-scale reconstruc-
tion of a human metabolic network (curated from pub-
lished data) was constrained using quantitative measures 
of gene and protein expression to predict tissue-specific 
metabolic uptake and release91. The study revealed a 
central role for post-transcriptional regulation in direct-
ing tissue-specific metabolic behaviours and associated 
metabolic diseases.

The discovery of active modules has paved the 
way for exciting diagnostic and therapeutic interven-
tions. For example, active modules showing char-
acteristic patterns of gene expression that correlate 
with specific disease phenotypes can yield valuable 
biomarkers for disease classification62,94,95. Module-
based biomarkers achieve greater predictive power and 

reproducibility compared with single-gene biomark-
ers, as demonstrated for the classification of numer-
ous human disorders including Alzheimer’s disease96, 
diabetes36,97–99 and several forms of cancer including 
breast cancer45,55,62,98,100,101, ovarian cancer73,102,103, glio-
blastoma67,70,73,74 and others39,72,94,104,105. Because active 
modules can reveal pathway-centric insights that are 
reinforced by multiple lines of evidence, they naturally 
provide mechanistic explanations for complex traits 
and polygenic diseases such as cancer. Moreover, active 
modules can assist in the discovery of drug-target path-
ways50,106 and in predicting patient outcomes, such as 
response to chemotherapy55.

Identification of conserved modules
Biological networks undergo substantial rewir-
ing through evolutionary time, concomitant with 
gains, losses or modifications of gene functions107–110. 
Therefore, network modules showing conservation over 
large evolutionary distances are likely to reflect well-
preserved ‘core’ functions that have been maintained 
by natural selection. Discovery of such ‘conserved 
modules’ can address fundamental questions about 
biological regulation while predicting evolutionary 
principles that shape network architectures. Some pub-
licly available tools for finding conserved modules are  
summarized in TABLE 1.

Conserved interactions. In one of the most fundamen-
tal approaches to identifying conservation at the net-
work level, individual interactions have been observed 
to occur between orthologous gene pairs in two species, 
corresponding to conserved protein–protein interac-
tions (known as interologues)111 or conserved regula-
tory interactions (known as regulogues)112. In one classic 
extension of this idea, a network of co‑expressed gene 
pairs in humans, flies, worms and yeast was derived; 
subsequently, a clustering algorithm was used to extract 
conserved modules underlying cell cycle regulation and 
other core cellular processes3.

Beyond conservation of individual interactions, com-
parisons of modules across species may reveal high over-
all consistency in structure and function despite a lack 
of one‑to‑one correspondence at the level of individual 
molecules or interactions. Hence, a group of approaches 
has been devised to align complex network structures, 
and these developments parallel the advances in compu-
tational solutions for cross-species sequence compari-
sons113. These ‘network alignment’ approaches can be 
organized as follows:

Pairwise network alignments. Computational methods 
for network alignment have greatly advanced evolu-
tionary comparisons of network modules. For example, 
local network alignment tools such as PathBLAST114 
and NetworkBLAST115 permit parallel comparisons of 
simple pathways (also known as linear paths) or sub-
networks (also known as modules), respectively. These 
methods use a common heuristic workflow whereby a 
merged representation of two networks, denoted the 
‘network alignment graph’, is searched for conserved 
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paths or subnetworks on the basis of a probabilistic  
log-likelihood model of interaction densities.

Parallel alignment of multiple networks. Network 
alignment has been progressively scaled for analysis of 
multiple (more than two) networks. For example, fast 
computation of conserved modules across as many as 
ten species was achieved in one study116 by redefining 
the alignment graph in NetworkBLAST and treating 
multiple networks as separate layers that are linked 
through common orthology. Orthology, as in the above 
methods for identifying conserved modules, is com-
monly defined based on sequence homology. However, 
each gene or protein may potentially harbour multiple 
orthologues and paralogues owing to gene duplication 
events in any of the multiple species being compared. 
The resulting many‑to‑many correspondences between 
putative orthologues can introduce high computational 
complexity in network alignment methods, which can 
scale exponentially with the addition of each new spe-
cies and corresponding network. To address this scala-
bility issue when aligning graphs from multiple species, 
global alignment methods117–119 identify functional 
orthologues on the basis of similar neighbourhood 
topologies across species (that is, the overall arrange-
ment of interactions surrounding a gene or protein or 
molecule).

Network alignment incorporating evolutionary 
dynamics. An important question in network evolution 
pertains to how the evolutionary dynamics of genome 
alterations shape network architecture over time120–122. 
Network alignment methods for scoring module con-
servation such as MaWish123 and others are increas-
ingly incorporating evolutionary rates of gene deletion, 
insertion and/or duplication for an accurate represen-
tation of the network evolution model. One study124 
additionally accounted for the phylogenetic history of 
genes, through reconstruction of a conserved ances-
tral protein–protein interaction network (CAPPI) 
from multiple species and its subsequent projection 
onto the individual networks to identify conserved  
subnetworks across flies, worms and humans.

Applications of conserved modules. Conservation-
based studies have provided fascinating insights into 
network evolution. For example, the identification of 
conserved metabolic genes and reactions across archea, 
bacteria and eukaryotes, followed by species clustering 
and simulations in the presence or absence of oxygen, 
indicated that the emergence of all three domains of 
life predated the widespread availability of atmospheric 
oxygen, and that adaptation to oxygen was coupled  
with increased network complexity and, concurrently, 
increased biological complexity125.

Additionally, comparative analyses of conserved 
modules can supplement sequence-matching tech-
niques for the prediction of function113,126–129, on the 
basis of the premise that interaction partners of ortholo-
gous genes or proteins are also likely to be functionally 
conserved. This was illustrated in the proof‑of‑principle 

application of NetworkBLAST, in which thousands of 
previously uncharacterized protein functions were 
predicted on the basis of their conserved interaction 
neighbourhoods, which were inferred from the pair-
wise alignment of protein–protein interaction networks 
across yeast, worms and flies115.

Evolutionary conservation can also support pre-
dictions of mechanisms of drug action: if a given 
drug targets elements of a module that is conserved 
across two evolutionarily distant model organisms, 
there is an increased probability that the same drug 
also targets the corresponding conserved module in 
humans130. Furthermore, the identification of evolu-
tionarily diverged modules in pathogenic species can 
uncover pathogen-specific drug targets that are absent 
in humans131.

Differential network modules
Molecular interactions can change dramatically in 
response to cellular cues, developmental stages, envi-
ronmental stresses, pharmacological treatments and 
disease states32,100,129,132,133. Yet, the inherently dynamic 
wiring of molecular networks remains under-explored 
at the systems level, as interaction data are typically 
measured under single conditions (for example, stand-
ard laboratory growth media). Therefore, various 
so‑called ‘differential’ network analyses (FIG. 2) have 
adopted an experimental approach whereby biologi-
cal networks are measured and compared across con-
ditions to identify interactions and modules that are  
differentially present, absent or modified.

Principles of differential network analyses. Analogous 
to differential expression analysis, differential network 
analysis involves pairwise subtraction of interactions 
that have been mapped in different experimental con-
ditions129. The subtractive process filters out ubiquitous 
interactions (so‑called ‘housekeeping’ interactions129) 
that are common to all static conditions of interest. By 
selectively extracting interactions that are relevant to the 
studied condition or phenotype, this reduces the typical 
complexity of static networks. Most notably, differential 
networks tap interaction spaces that are inaccessible to 
static networks. In particular, individual interactions 
that may be too weak (in terms of the magnitude of the 
interaction strength) to be captured in either static con-
dition can be identified solely based on the significance 
of their differential measurements between the condi-
tions27,129. Such differential interactions, once identified, 
may be further organized into modules using numerous 
hierarchical- or graph-clustering methods47,134 or various  
Cytoscape57-based network analysis tools135,136.

Applications. Physical networks assembled from quan-
titative protein–DNA and protein–protein binding data 
under different conditions were some of the first to be 
analysed in a differential mode. For example, using 
standard chromatin immunoprecipitation (ChIP)-
based assays for protein–DNA interactions in vivo 
(Supplementary information S1 (table)), alterations 
in binding of transcription factors (TFs) to promoters 
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protein–protein interactions following epidermal 
growth factor (EGF) treatment in yeast have shed light 
on EGF-dependent signalling138. A recent study139 that 
explored tissue-specific effects on network wiring dem-
onstrated a profound role of tissue-regulated alternative 
splicing on dynamic remodelling of protein–protein 
interaction networks. Using a luminescence-based 
mammalian interactome mapping (LUMIER) approach 
for measuring physical binding between experimen-
tally chosen ‘bait’ (seed) and ‘prey’ (target) proteins, the 
authors mapped protein–protein interactions between 
normally functioning prey proteins and several neurally 
regulated bait proteins. These bait proteins were geneti-
cally engineered to include or exclude specific exons 
with the purpose of exploring exon-dependent effects 
on network wiring in human cells. The study found 
that almost one-third of neurally regulated exons that 
were tested significantly modulated protein–protein  
interactions, and that overall, tissue-dependent exons 
participated in more protein–protein interactions  
than other proteins.

Differential analysis has also been carried out 
across functional networks (that is, as opposed to 
physical networks; see Supplementary information S1 
(table)). For example, we applied an approach termed 
differential epistasis mapping (dE‑MAP) to compare 
genetic networks that are induced by different types of 
DNA-damaging agents27,140. In another example, gene 
co‑expression networks from transcriptomic profiles of 
normal cells and prostate cancer samples were compared 
to identify subnetworks that are induced in prostate can-
cer141. In this study, differential, but not static, networks 
successfully detected known prostate-cancer-specific 
interactions for RAD50 and telomeric repeat-binding 
factor 2 (TRF2).

Similarly, metabolic networks assembled from cor-
related activities of liver metabolites were differentially 
compared between normal and diabetic conditions to 
identify functional regulators of diabetic dyslipidemias 
in humans142. It is likely that continued advances in dif-
ferential network mapping and analysis will shed light on 
tissue-specific, spatiotemporal and dosage-dependent  
rewiring of biological networks.

Discovery of composite functional modules
Rationale for composite modules. Different types of 
biological interactions provide distinct, yet comple-
mentary, insights into cellular structure and function. 
For example, protein–protein, regulatory and meta-
bolic networks each reflect a different aspect of the 
physical architecture of a cell (Supplementary informa-
tion S1 (table)). Moreover, genetic interactions, which 
quantify epistatic effects of one gene on the phenotype 
expressed by another gene, reveal functional relation-
ships between gene pairs. A key opportunity lies in rec-
onciling these complementary network views of the cell 
into cohesive models. Powerful integrative approaches 
aimed at identifying composite functional modules that 
are composed of multiple types of biological interac-
tions are providing considerable advances in this 
direction.

Figure 2 | Differential analysis of molecular networks across conditions.  
a | Schematic representation of a differential mapping approach to identify 
dynamically rewired modules. Molecular networks are assembled under multiple 
static conditions, and these static networks are subtracted across a pair of 
conditions to deduce differentially enriched interactions and modules. Edge widths 
indicate interaction strengths. b | Differential wiring of the genetic interactions  
of the serine/threonine mitogen-activated protein kinase SLT2 before and after 
methyl-methanesulphonate-induced DNA damage in yeast. Differential interactions 
effectively capture DNA damage response genes and several context-dependent 
kinases, whereas static interactions are enriched for housekeeping functions. Part b 
is modified from REF. 129.
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following amino acid starvation10 or chemical induc-
tion of DNA damage137 were mapped in yeast, thus 
providing insights into the dynamic regulation  
of stress response pathways. Similar comparisons of 
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Modes and applications. One class of approaches maps 
composite modules that are jointly supported by physi-
cal and genetic interactions143 (FIG. 3). A common theme 
in these approaches13,128,144–146, implemented in the 
PanGIA application147 (TABLE 1), involves the identifica-
tion of overlapping clusters of physical and genetic inter-
actions; these composite modules implicate genes acting 
within a pathway. Clusters of genetic interactions that 
bridge two different composite modules reflect inter-
module dependencies that link synergistic, compensa-
tory or redundant pathways144. Integrative analysis of 
composite modules encompassing physical and genetic 
interactions can reveal physical mechanisms underlying 
phenotypes caused by mutations from genetic screens or, 
conversely, can predict genetic dependencies between 
protein complexes that have been mapped in physical 
binding assays. Module maps elucidating global physi-
cal–genetic inter-relations have been assembled in 
a number of studies exploring heat shock protein 90 
(Hsp90) signalling148, chromosomal biology13,145, RNA 
processing149, secretory pathways150, DNA damage 
responses27 or global biological processes144,151.

Integrative strategies have similarly uncovered com-
posite modules in signalling and regulatory networks, 

primarily through combined evaluation of protein–
DNA interactions (specifically, TF–target interactions) 
and protein–protein interactions11,59,152,153, or by addi-
tionally including genetic interactions151. In early work 
along these lines, composite ‘motifs’ comprised of 
regulatory and protein–protein interactions among 2,  
3 or 4 proteins were mapped and classified into dis-
tinct feed-forward loops, interacting transcriptional 
hubs and other logical circuits152. Such simple motifs 
were thought to combine with recurrent patterns to 
organize higher-order network ‘themes’; that is, com-
plex functional modules that are associated with spe-
cific biological responses151. In a related study153, yeast 
protein–protein and protein–DNA interaction net-
works were combined to identify 72 co‑regulated pro-
tein complexes. Such co-regulated complexes depict 
dense protein clusters (in protein–protein networks) 
for which members are jointly regulated by a common 
set of transcription factors (in corresponding protein–
DNA networks). At the network level, these TF–protein  
co‑complexes were visualized along with their regula-
tory relationships to the other (non-transcriptional) 
modules that they regulate. An evolutionary compar-
ison of these co‑regulated complexes suggested that 

Figure 3 | Integrating networks across interaction types.  a | A schematic view of composite functional modules 
identified through computational integration of diverse types of interaction networks. b | A hierarchical representation of 
modular and intermodule relationships inferred through joint analysis of physical (protein–protein) and genetic (epistatic) 
interactions (from supplementary data files in REF. 147) using the Cytoscape57-based application tool, PanGIA147. Here, 
module memberships are determined on the basis of physical and genetic interaction densities. Composite (physical–
genetic) modules are represented as boxes, whereas edges between boxes represent the density of intermodule genetic 
interactions, that is, connecting genes across the two modules. c | A magnified internal view of four network modules. 
Blue edges represent protein–protein interactions and red edges represent genetic interactions within and between 
these modules, indicating intra-pathway and cross-pathway functional inter-dependencies, respectively.
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protein complexes may evolve with slower dynam-
ics than protein–DNA transcriptional relationships. 
Related studies exploring co‑regulated complexes in 
yeast have revealed cross-pathway communication 

between hyperosmotic, heat shock and oxidative 
stress response systems59, and have elucidated sig-
nalling networks that are active during pheromone  
responses53.

Figure 4 | Identification of conserved functional modules by integration of data across multiple species.   
a | Functional linkage networks are assembled from multiple lines of evidence (for example, protein–protein and genetic 
interactions, gene expression, protein localization, phenotypes and sequence data) and integrated with differential 
gene expression profiles. This example is derived from human and mouse tissues (stem cells and differentiated cells). 
Candidate seed genes (red) are defined as differentially expressed orthologues. The functional neighbourhood (yellow) 
of each seed gene is marked by genes for which path confidence (the product of linkage weights along the path) from 
the seed gene exceeds a specified threshold. b | A search for modules seeks densely connected subnetworks of genes 
that share similar patterns of expression in both species. c | In this search, subnetworks are grown simultaneously in  
both species starting from the seed genes (‘1’ in the square) and expanded through the iterative addition of genes that  
satisfy both of two criteria: first, the genes must be in the same functional neighbourhood, and second, the genes must 
maximize a differential expression activity score. Differentially expressed genes are coloured green (upregulated) or 
red (downregulated). The figure is modified from REF. 157.
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Protein–DNA interactions have also been com-
bined with metabolic networks to understand the 
effects of transcriptional regulation on biochemical 
output83,84,90,154–156. For example, the probabilistic regu-
lation of metabolism (PROM) method was developed 
to facilitate automated and quantitative integration of 
regulatory interactions and other high-throughput 
data for constraint-based modelling of metabolic net-
works156. The method was applied for a genome-scale 
analysis of an integrative metabolic regulatory network 
model for M. tuberculosis, incorporating information 
from greater than 2,000 TF–gene promoter interactions 
regulating 3,300 metabolic reactions, 1,300 expression 
profiles and 1,905 deletion phenotypes from E. coli and 
M. tuberculosis. The method enabled a powerful predic-
tion of microbial growth phenotypes under various envi-
ronmental perturbations and aided the identification of 
novel gene functions. Furthermore, the study isolated 
several transcription factor hubs that regulate multiple 
target proteins in the pathogen interactome as a strategy 
for uncovering promising antimicrobial drug targets.

Combined application of integrative approaches
Given the above four integrative approaches, a very 
recent trend has been to chain together more than one 
of these approaches to create network analysis pipe-
lines of increasing sophistication and complexity. For 
example, network-module-finding methods based 
on integration across molecular profiles and network 
types (for example, for finding active modules or com-
posite modules) have been extended across species for 
extracting co‑functional modules that are also con-
served. A multi-species and scalable framework, neXus 
(network cross(X)-species search)157, was developed 
for discovering conserved functional modules through 
parallel expression profiling in multiple species (FIG. 4). 
Specifically, a clustering-based approach was used to 
extract subnetworks from functional linkage networks 
(incorporating a wide range of interaction and omics 
information) that had been derived independently 
from mouse and human samples. Subnetworks were 
seeded from differentially expressed orthologues, and 
then expanded simultaneously for both species. Using 
programmatic constraints to apply thresholds to candi-
date subnetworks according to network connectivity and 
molecular activity, conserved active subnetworks were 
nominated. These subnetworks showed significant dif-
ferential activity in stem cells relative to differentiated 
cells and shared similar patterns of gene expression 
across mouse and human samples. An extended version 
of the cMonkey framework that was designed for simul-
taneous (rather than sequential) data integration across 
multiple species158 (TABLE 1) further expands the scope 
of such analyses. It allows parallel evaluation of pro-
tein–protein interactions, transcriptomic data, sequence 
profiles, metabolic and signalling pathway models and 
comparative genomics from multiple species to infer 
conserved co‑regulated modules.

Another recent study159 mapped global genetic net-
works in the fission yeast Schizosaccharomyces pombe 
and compared them with integrated maps of existing 

genetic and protein–protein networks (composite mod-
ules) in the divergent budding yeast Saccharomyces 
cerevisiae, with the aim of identifying conserved func-
tional modules. The authors demonstrated a hierarchical 
model for the evolution of genetic interactions: interac-
tions among genes that encoded proteins in the same 
protein complex showed the highest degree of conserva-
tion, those involved within the same biological process 
showed lower but still significant conservation, whereas 
those participating in different biological processes 
were poorly conserved. Conservation of cross-pathway 
interactions between distinct biological processes was 
observed on a larger scale. Together, these observa-
tions reveal functional and evolutionary design prin-
ciples underlying the modular organization of cellular 
networks.

With continued progress in integrative bioinformat-
ics pipelines and the expansion of data-handling capabil-
ities, a very large combination of data types, conditions, 
species, time points and cell states could potentially 
be amenable to joint evaluation for in‑depth network 
analysis.

Perspective
The past decade has witnessed an explosive growth in 
data on biological networks9–14,16,160,161, albeit with inher-
ent limitations24 and largely from a static perspective129. 
The integrative approaches reviewed here substantially 
increase the scope, scale and depth of network analy-
ses, by permitting joint interpretation of ensembles of 
biological information. Although these strategies have 
greatly refined high-throughput data analysis by tackling 
several of its prevalent challenges — such as variability in 
accuracy and coverage, and context-specificity — even 
greater power for mining biological knowledge remains 
to be achieved by implementing a combination of these 
approaches. Such combination strategies that encompass 
multiple algorithms, data types, conditions and species 
contexts are likely to maximize the performance, rel-
evance and scope of module-assisted network analysis. 
For example, although it has not yet been attempted, it 
would be conceivable to analyse differential networks 
(discussed above in the ‘Differential network modules’ 
section) across multiple species (discussed above in the 
‘Identification of conserved modules’ section) to detect 
conserved dynamic modules and process-specific path-
ways. Another challenging direction would be to study 
the evolution of composite modules, as it is becoming 
increasingly clear that different network types exhibit 
specific evolutionary dynamics; for example, regulatory 
interactions evolve more rapidly than genetic, protein 
and metabolic networks162.

Module-based biomarkers derived through integra-
tive network analyses also provide superior predictive 
performance in disease classification, especially when 
compared with single-gene disease markers that have 
been routinely annotated through genome-wide asso-
ciation studies (GWASs)38,62,71,72,163,164. Future work on 
integrative network analyses will provide greater insight 
into pathway structures and highlight network-level 
dynamics underlying biological responses.
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