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Abstract

Phylostratigraphy is a computational framework for dating the emergence of DNA and protein sequences in a phylogeny.
It has been extensively applied to make inferences on patterns of genome evolution, including patterns of disease
gene evolution, ontogeny and de novo gene origination. Phylostratigraphy typically relies on BLAST searches along a
species tree, but new simulation studies have raised concerns about the ability of BLAST to detect remote homologues
and its impact on phylostratigraphic inferences. Here, we re-assessed these simulations. We found that, even with a possible
overall BLAST false negative rate between 11–15%, the large majority of sequences assigned to a recent evolutionary
origin by phylostratigraphy is unaffected by technical concerns about BLAST. Where the results of the simulations did
cast doubt on previously reported findings, we repeated the original analyses but now excluded all questionable sequences.
The originally described patterns remained essentially unchanged. These new analyses strongly support phylostratigraphic
inferences, including: genes that emerged after the origin of eukaryotes are more likely to be expressed in the ectoderm
than in the endoderm or mesoderm in Drosophila, and the de novo emergence of protein-coding genes from non-
genic sequences occurs through proto-gene intermediates in yeast. We conclude that BLAST is an appropriate and suffi-
ciently sensitive tool in phylostratigraphic analysis that does not appear to introduce significant biases into evolutionary
pattern inferences.
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Introduction

Correlating the emergence of particular DNA or protein se-
quences with molecular and phenotypic features is one way
to harness the information that we obtain from genome
sequencing projects. Phylostratigraphy is a framework in
which this can be done in a phylogeny aware context
(Domazet-Lo�so et al. 2007). Starting from the genome of a
focal species, phylostratigraphy infers the emergence of novel
sequences at a particular phylogenetic node, usually by using
the similarity search algorithm BLAST (Altschul et al. 1990) on
a set of genomes that represent the nodes. Each sequence in
the focal genome is thereby assigned an “evolutionary age”
corresponding to the most distant node in the phylogeny
where BLAST could detect a homologue for this sequence.
This age classification, also referred to as “phylostrata” or

“conservation level” classification, enables to distinguish
younger sequences, for which homologues can only be found
in closely related species [often called orphans or taxonom-
ically restricted (Khalturin et al. 2009)], from older sequences
that are conserved in very distant species (Tautz and
Domazet-Lo�so 2011). While phylostratigraphy is a general
evolutionary framework that in theory applies to any type
of sequence, it has mostly been exploited to study the evo-
lution of genes, transcripts or open reading frames (ORFs).

It is important to note that genes with apparent young se-
quences may have evolved through two different mechanisms.
One is de novo evolution, which has only relatively recently
been recognized as an important mechanism for evolution of
novelty (Levine et al. 2006; Zhou et al. 2008; Heinen et al. 2009;
Knowles and McLysaght 2009; Toll-Riera et al. 2009; Carvunis
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et al. 2012; Nemeand Tautz 2014). The other is divergence from
an ancestral gene followed by a phase of large sequence diver-
gence (Domazet-Lo�so and Tautz 2003). The concept of phylos-
tratigraphy was originally based on this latter mechanism and
proposed the idea of a punctuated evolution of protein-coding
genes and their descendant families (Domazet-Lo�so et al. 2007;
Domazet-Lo�so and Tautz 2010a). Punctuated evolution as-
sumes that a gene originates by duplication from an existing
gene followed by divergence with a subsequent slow-down in
sequenceevolution.Suchslowevolvingorphangenes were first
detected in Drosophila (Domazet-Lo�so and Tautz 2003). The
shifts in sequencespace generated by phases of large evolution-
ary divergence after gene duplication may indicate new adap-
tive functions and phylostratigraphy aims to trace such events
and to statistically correlate them to biological patterns
(Domazet-Lo�so and Tautz 2010b; Quint et al. 2012; Mendoza
et al. 2013; �Sestak et al. 2013; �Sestak and Domazet-Lo�so 2015;
Drostetal.2016). Inthiscase,phylostratigraphyaimstocapture
the time when the sequence divergence took place, not neces-
sarily the time of origin of the ancestral gene.

De novo emergence from a previously non-genic sequence
can be equally detected by phylostratigraphy. For a long time,
de novo emergence was considered to be very unlikely (Tautz
2014) and had therefore initially not been seriously considered
as a model of origin of orphan genes (Domazet-Lo�so and
Tautz 2003). However, it is now clear that de novo gene birth
is in fact another important process that can be traced by
phylostratigraphy (Tautz and Domazet-Lo�so 2011).
Accordingly, phylostratigraphy has also been used in later
studies specifically focusing on the patterns and mechanisms
of de novo evolution (Carvunis et al. 2012; Abrus�an 2013;
Neme and Tautz 2013). However, from the results of phylos-
tratigraphy alone, one cannot know with certainty if a young
sequence corresponds to a case of de novo birth or a case of
divergence from an ancestral gene. An unequivocal demon-
stration of de novo evolution requires also invoking synteny
information and reconstruction of the mutational events that
have led to the novel sequence (Tautz et al. 2013; McLysaght
and Hurst 2016). Since this is not always possible at the gen-
ome scale, it is often assumed as a proxy that sequences for
which BLAST cannot find homologues among even closely
related species are most likely to be enriched in de novo cases
(Tautz and Domazet-Lo�so 2011; Carvunis et al. 2012).

Although BLAST is very powerful in detecting homologues
in large databases, it has known limitations when sequences
are highly diverged. In particular, it was observed that BLAST
has problems to detect remote homologues of short and fast-
evolving sequences (Elhaik et al. 2006; Moyers and Zhang
2015). These limitations do not much affect evolutionary in-
ferences related to punctuated evolution of proteins and their
descendant families, where the existence of possible remote
homologues is not the primary question (Domazet-Lo�so et al.
2007; Domazet-Lo�so and Tautz 2010a). If anything, BLAST
could be too sensitive in this context, and find an older origin
for a protein, although it has gone through a recent shift in
sequence space. For example, transcription factors that have
arisen to regulate a specific function in a young lineage may
become placed into a much older node because of a match

within their DNA binding domain (Capra et al. 2013). BLAST
could also overestimate a sequence’s evolutionary age by
yielding spurious hits that do not reflect true homology, es-
pecially if used with permissive statistical cutoffs.

On the other hand, the difficulty of BLAST searches to find
remote homologues could be problematic in the context of
making cases for de novo emergence, versus divergence from
an ancient gene (Schlötterer 2015). Ancient genes that have
diverged too much for BLAST to detect them in the genomes
of distant species may then be erroneously categorized as too
young by phylostratigraphy. These BLAST limitations have
motivated the development of further refined search meth-
ods, such as PSI-BLAST (Altschul et al. 1997), HHMER3 (Finn
et al. 2011) or HHblits (Remmert et al. 2012). Although these
refined methods can detect more remote homologues, they
are partially computationally more costly, require similarity
profiles from well-populated gene families and are therefore
less generally applicable. Another approach is to use orthol-
ogy detection algorithms to estimate gene age (Liebeskind
et al. 2016), but the properties of this as well as the above
approaches have still to be further explored. Hence, BLAST
remains currently the workhorse for obtaining initial phylos-
tratigraphic information and it is therefore important to
understand its advantages, as well as its limitations and pos-
sible error margins.

In an attempt to estimate the false negative error rate of
BLAST and its impact on evolutionary inferences, Elhaik et al.
(2006) simulated DNA sequence evolution and used BLAST
to look for homologues of these simulated sequences. They
found in these simulations that fast-evolving DNA sequences
tended to appear younger than they were, and suggested that
the “Inverse Relationship Between Evolutionary Rate and Age
of Mammalian Genes” previously reported (Alb�a and
Castresana 2005) may have been an artifact. This suggestion
was rapidly mitigated when Alb�a and Castresana (2007)
pointed out a problem in the simulation framework used
by Elhaik et al. (2006). BLAST uses a two-step search algorithm
that starts by finding matches on short motifs and extending
the alignment based on these (Altschul et al. 1990). Proteins
that evolve homogeneously along their whole sequence are
thus more difficult to trace than proteins that include at least
one or more slowly evolving domains. Real proteins fall
mostly into this latter class, allowing BLAST to find homo-
logues even when the rest of a protein sequence evolves very
fast. Therefore, Alb�a and Castresana (2007) argued that sim-
ulating protein evolution to assess the power of BLAST needs
to take natural among-site rate heterogeneity into account.

Using this controlled approach, Alb�a and Castresana (2007)
have shown that less than 5% of simulated homologues of
mammalian genes are misclassified as recently evolved (i.e. too
young) when rate heterogeneity is taken into account.
Applying an orthogonal approach, Carvunis et al. (2012) found
that only 5% of ORFs appearing young in a phylostratigraphy
of Ascomycota fungi actually had ancient homologues re-
vealed when searching the entire non-redundant protein se-
quence database of NCBI. The false negatives in BLAST
searches were therefore considered to occur at an acceptable
rate, similar to most genome-scale analyses.
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Still, the question re-emerged recently when Moyers and
Zhang (2015; 2016a) sought to quantify the power of BLAST
to detect remote homologues, and to assess the possible
implications for trends and patterns inferred from phylostra-
tigraphic analysis. In the first study (Moyers and Zhang 2015),
they make the point that Alb�a and Castresana (2007) used
rate heterogeneity models that were derived from only 14
genes conserved across vertebrates. Hence, they used a much
larger set of genes derived from Drosophila melanogaster and
calculated among-site rate heterogeneity and average diver-
gence rate for each gene based on an alignment among 12
Drosophila species, which represent a similar relative conser-
vation level as vertebrates. These actual genes and their asso-
ciated divergence rates were then used to simulate their
possible ancestors at the origin of life and ask which percent-
age of such ancestors can be traced by BLAST. They find that
BLAST makes an incorrect assignment for 14% of the se-
quences simulated. While this still implies that the large ma-
jority of sequences are not affected by problems with BLAST,
the authors propose that this level of error could lead to
systematic biases in gene evolution patterns.

In their second paper, Moyers and Zhang (2016a) addressed
the question of de novo evolution of genes in yeast species.
Starting from protein sequence alignments between yeast spe-
cies closely related to the focal species Saccharomyces cerevi-
siae, Moyers and Zhang (2016a) measured among-site rate
heterogeneity and average divergence rates, and simulated
possible ancestors throughout the Ascomycota phylogeny
based on the measured rates. They report that BLAST missed
11% of the simulated ancient homologues. They show that the
corresponding ORFs, which may erroneously appear young in
phylostratigraphy, despite potentially being ancient, share
many physical and functional properties with the ORFs
deemed young by Carvunis et al. (2012) and Abrus�an et al.
(2013). Based on these observations, Moyers and Zhang
(2016a) question the validity of genome-wide phylostrati-
graphic analyses for deriving models of de novo gene birth.

In summary, Moyers and Zhang (2015; 2016a) have revived
several important technical and conceptual issues pertaining
to an older debate on the limitations of BLAST (Alb�a and
Castresana 2005; Elhaik et al. 2006; Alb�a and Castresana
2007). Here, we show that the previously published inferences
on gene emergence and evolution that were questioned by
Moyers and Zhang (2015; 2016a) are in fact robust to BLAST
limitations, even if error rates were as estimated by Moyers and
Zhang (2015; 2016a). We argue that Moyers and Zhang’s (2015;
2016a) simulations have underestimated the power of BLAST
in phylostratigraphy. We conclude that the alleged evidence
for a systematic phylostratigraphic bias cannot be reproduced.

Results

Most Young Phylostratigraphic Age Assignments
Cannot Be Attributed to BLAST Errors
The simulations performed by Moyers and Zhang suggested
that up to 14% of Drosophila melanogaster sequences (2015)
and up to 11% of Saccharomyces cerevisiae sequences (2016)
may erroneously appear to have originated recently due to

the limitations of BLAST. While these are higher fractions
than the 5% found by Alb�a and Castresana (2007), there is
no reason to claim an “extreme” problem of age underesti-
mation and the large majority of assignments in phylostrati-
graphic studies is still not in doubt. Here, we updated the
Drosophila phylostratigraphy for over 13K Drosophila mela-
nogaster real sequences (see supplementary table S1,
Supplementary Material online). We then compared the
simulated and the real data obtained for 6,629 of these se-
quences, where simulated age assignments were available (see
supplementary table S1, Supplementary Material online). The
resulting distributions (fig. 1A) show that the large number of
sequences lacking remote homologues in real data cannot be
recapitulated by simulations (fig. 1B), as Moyers and Zhang
(2015) found as well (compare fig. 5 in the respective paper).
Similarly in yeast, comparing the age distributions of 5,878 S.
cerevisiae sequences inferred from real (Carvunis et al. 2012)
and simulated (Moyers and Zhang 2016a) data reveals strik-
ing differences (fig. 1C). In stark contrast with the 11%
estmate of misplaced sequences by Moyers and Zhang
(2016a), �40% of sequences lack a detectable homologue
in the distant species S. pombe (fig. 1D). Focusing on the three
youngest age classes for example, Moyers and Zhang (2016a)
find 14 misplaced sequences in their simulations while
Carvunis et al. (2012) found 445, i.e. over 30 times more
(fig. 1D). The number of sequences found young in real phy-
lostratigraphy analyses thus dwarfs the number of error-
prone sequences expected to appear young because of
BLAST false negatives as estimated by Moyers and Zhang
(2015 and 2016a).

Since simulations are by nature stochastic, the list of se-
quences found error-prone in a given simulation run is ex-
pected to vary somewhat each time a new simulation run is
performed. Therefore, the low number of sequences found
error-prone could potentially increase towards values equal
or superior to the values observed in real data if the union of
multiple simulation runs was considered. We thus investi-
gated whether increasing the number of simulation runs
could eventually yield as many error-prone sequences as
young sequences found in real phylostratigraphy. To this
aim, we performed a saturation analysis on a series of 10
independent runs simulated by Moyers and Zhang (2015)
on Drosophila sequences. Starting from 3,840 sequences
that were classified as restricted to Eukaryota in the real
phylostratigraphy (fig. 1B), we asked how many of these se-
quences are found susceptible to BLAST limitations in the
union of up to ten successive independent simulation runs.
We found that, while on average a single simulation run
identifies 866 error-prone sequences, this number increases
only to 1,006 when the union of ten simulation runs is con-
sidered (figs. 1B and 2). The number of times a simulation is
re-ran thus barely affects estimates of BLAST limitations.
Therefore, while phylostratigraphic methods should be im-
proved to reduce an already low false negative rate of 5–15%,
technical BLAST artifacts cannot explain the large numbers of
sequences lacking recognizable homologues across species.

No Evidence for Phylostratigraphic Bias . doi:10.1093/molbev/msw284 MBE

845

Deleted Text: y
Deleted Text: p
Deleted Text: a
Deleted Text: a
Deleted Text: c
Deleted Text: b
Deleted Text: a
Deleted Text: e
Deleted Text: ``e
Deleted Text: ''
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw284/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw284/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw284/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw284/-/DC1
Deleted Text: figure 
Deleted Text: figure 
Deleted Text: figure 
Deleted Text: figure 
Deleted Text: figure 
Deleted Text: figure 
Deleted Text: ; figure 
Deleted Text: fig. 
Deleted Text: 1<italic>B</italic>
Deleted Text: -


No “Spurious” Patterns of Phylostratigraphy
We next asked if BLAST limitations, whatever their magni-
tude, could have influenced the published correlations be-
tween phylostratigraphic and evolutionary patterns. This was

attempted by Moyers and Zhang (2015; 2016a) who, al-
though they admittedly could not reproduce the exact pat-
terns that were found in real data, claimed that the simulated
sequences also yielded evolutionary patterns that appear

FIG. 1. The majority of phylostratigraphy-based young age assignments cannot be attributed to BLAST limitations for D. melanogaster or S.
cerevisiae. (A) Phylostratigraphic assignments for the subset of D. melanogaster sequences chosen by Moyers and Zhang (2015) using real and
simulated sequences. (B) Bar graph comparing the number of D. melanogaster sequences found young by phylostratigraphy using real and
simulated sequences, when young is restricted to Eukaryota, or to the youngest three phylostrata (Drosophila, Diptera, Insecta). (C) Distribution is
redrawn from Figure 1B in Moyers and Zhang (2016a), using a linear scale, rather than a log scale. Numbers indicate groups of S. cerevisiae ORFs of
increasing conservation level within the Ascomycota, from S. cerevisiae-specific (1) to conserved in S. pombe (10). (D) Bar graph comparing the
number of S. cerevisiae sequences found young by phylostratigraphy using real and simulated sequences, when young is considered to include all
yeast species used for analyses except for S. pombe (inferred age< 10), or to the youngest three phylostrata (inferred age< 4). Note that the
simulated results for D. melanogaster sequences represent the average number of sequences assigned to each phylostrata over ten runs.
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interesting and significant, and that one would have no pos-
sibility to tell which ones are correct. Specifically, Moyers and
Zhang criticize three series of results that we previously pub-
lished: 1) Domazet-Lo�so et al. (2007) reported that the genes
expressed in ectoderm, mesoderm and endoderm during
Drosophila development show a non-random distribution
of phylostratigraphic conservation levels; 2) Domazet-Lo�so
and Tautz (2008) showed that human disease genes tend
to be more ancient than expected; 3) Carvunis et al. (2012)
and Abrus�an (2013) found that many structural and func-
tional characteristics of ORFs sequences (such as length, ex-
pression level or hydropathicity) correlate with their date of
emergence in the Ascomycota fungal phylogeny. Moyers and
Zhang (2015) also re-investigated the finding that new gene
origination peaked in the common ancestor of Bilateria
(Domazet-Lo�so et al. 2007) but they could not recapitulate
this pattern in their simulations.

First, we re-examined the claim according to which simu-
lated D. melanogaster sequences may yield significant over-
and underrepresentation of genes from certain age groups
that are expressed in ectoderm, mesoderm, and endoderm
(Moyers and Zhang 2015). We obtained the simulated se-
quence sets from the authors and reproduced the patterns
shown in Moyers and Zhang (2015). However, we could not
reproduce the corresponding significance values (fig. 3A),
even without Bonferroni correction (see supplementary table
S2, Supplementary Material online). The magnitude of the
log-odds ratio obtained in their simulations (fig. 3A) is much
lower than reported in the original study (Domazet-Lo�so et al.
2007). Moyers and Zhang (2015) have combined ten simula-
tion runs to obtain this pattern and its significance, but we
show that the individual runs have no common trend and

that none are significant (fig. 3B). After having been alerted to
this problem by us while the present manuscript was under
review, Moyers and Zhang re-evaluated their algorithms and
found a mistake. A corresponding erratum has been pub-
lished in MBE (Moyers and Zhang 2016b).

Nevertheless, to further evaluate the robustness of the
central original finding that the genes emerging after the ori-
gin of eukaryotes tend to be expressed more in ectodermal
than in endodermal and mesodermal tissues (Domazet-Lo�so
et al. 2007) we repeated the analysis of Drosophila germ layers
using the most recent expression and sequence databases.
The input dataset we use here was much better populated
compared to the datasets in the original study (see Methods).
This analysis confirmed the initial finding that the ectoderm is
expressing evolutionary younger genes than the mesoderm
and endoderm (fig. 4A). However, some of the fluctuations
seen in the original data (i.e. fig. 2A in Domazet-Lo�so et al.
2007) appear to be more smoothed out in the current ana-
lysis, likely due to the more extensive data available. When we
removed from the analysis genes that Moyers and Zhang
found susceptible to the BLAST error in their simulations
(192 out of 4157 genes with expressions) the general profiles
remained largely unaffected (fig. 4B), i.e. such potentially mis-
placed genes do not distort the major results.

Second, we observed another statistical problem in Moyers
and Zhang’s (2015) critique of our finding that human disease
genes are enriched in ancient genes relative to young ones,
which was originally shown by assessing the significance of log-
odds ratio per phylostratum (Domazet-Lo�so and Tautz 2008).
In Moyers and Zhang’s analyses, a set of human genes was
simulated and they reported “a positive correlation between
the inferred age of a gene and its probability of being a disease
gene (Spearman’s q¼ 0.623, P¼ 0.004; fig. 4).” [quote from
(Moyers and Zhang 2015)]. This statement is actually different
from our finding that two phylostrata (origin of life and origin
of metazoans) show a significant enrichment of disease genes
and that young genes are significantly under-represented
(Domazet-Lo�so and Tautz 2008). We tested Moyers and
Zhang’s simulated dataset using the original log-odds ratio
approach (Domazet-Lo�so and Tautz 2008) and found only
non-significant under- and over-representations (fig. 5A). We
then removed from the original dataset genes that Moyers and
Zhang found error-prone in their simulations (571 out of 5217
simulated genes) and found that the general profiles remained
largely unchanged (fig. 5A). In the simulated data, the distri-
bution of disease genes on the phylostratigraphy map is not
different from the distribution of the total set of genes, oppos-
ite of what we found in the original study (fig. 5B). These results
together suggest that Moyers and Zhang’s simulations did not
mimic real phylostratigraphic maps in humans.

Third, we investigated whether the evolutionary con-
tinuum of structural and functional features in fungal ORFs
reported by Carvunis et al. (2012) and Abrus�an (2013) could
be attributed to false negatives in BLAST, as claimed by
Moyers and Zhang (2016a). In the original study, Carvunis
et al. (2012) had included several technical controls. They
showed that a significant correlation between conservation
level and ORF length could be reproduced even when limiting

FIG. 2. Saturation analysis of D. melanogaster genes that are found
error-prone by Moyers and Zhang’s simulations (2015) (black tri-
angles). Gray dashed line marks 3,840 sequences found restricted to
Eukaryota in the real phylostratigraphy (Figure 1B). The average of 15
random permutations of 10 successive simulations is shown; stand-
ard errors of the mean are not shown because they are shorter than
the height of the triangles.
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analysis to ORF sequences with BLAST hits covering at least
80% of sequence length. This ensured that the correlation was
not solely driven by the higher probability of having a small
conserved domain in a long ORF relative to a short one. They
also implemented a series of partial correlations to control for
the known cross-correlations between length, expression
level, and evolution rates. Hence, even if BLAST were biased
by length or evolution rates as observed by Moyers and
Zhang, the correlation between conservation level and ex-
pression level would not be overly affected. Furthermore, all
correlations reported by Carvunis et al. (2012) were checked
for robustness by verifying that significance was also observed
when excluding very young ORFs and when sampling only 50
ORFs from each phylostratum (100 bootstrap simulations per
correlation statistics). This ensured that the signals were not
solely driven by differences between ORFs of conservation
level 10, which constitute the majority of the annotated gen-
ome, and other ORFs. Moyers and Zhang (2016a) did not
reproduce any of these controls as they focused exclusively on
the BLAST false negative rate.

To determine whether BLAST false negatives as estimated
by Moyers and Zhang (2016a) may nevertheless explain the
observed evolutionary continuum, we revisited the original
analyses after excluding all ORFs deemed error-prone by

Moyers and Zhang (2016a). All trends reported by Carvunis
et al. (2012) were qualitatively and statistically robust to the
BLAST false negative rate, although the values of Kendall taus
decreased slightly when using this smaller subset of ORFs
relative to the original study (fig. 6, table 1). We performed
Kruskal–Wallis tests within each age group to quantify the
significance of differences between the original, simulated,
and reduced original ORF sets (see supplementary table S3,
Supplementary Material online). The P-value of the Kruskal–
Wallis test was smaller when comparing the original and
simulated sets than when comparing the original and
reduced original sets in the large majority of cases. Hence,
rather than undermining the original conclusions, the simu-
lation approach actually strengthens them.

Putative De Novo Genes and Proto-Genes Identified
by Phylostratigraphy
Having shown that false negatives in BLAST searches barely
affect phylostratigraphic outcomes, we next investigated
whether phylostratigraphy can indeed detect de novo genes.
As stated in a recent opinion piece (McLysaght and Hurst
2016), de novo genes like all genes must be under functional
selection. Phylostratigraphy in this regard can only identify
“putative” de novo genes since it evaluates sequence

FIG. 3. Phylostratigraphic analyses of gene expressions in fruit fly germ layers are not attributable to false negatives in BLAST. (A) Overrepresentation
profiles averaged over 10 simulated datasets reported by Moyers and Zhang (2015) in their figure 3c. None of the deviations is significant by
hypergeometric test (ns) with Bonferroni correction. For comparison real phylostratigraphy profiles for germ layers are shown (dashed lines).
(B) Overrepresentation profiles in ectoderm for 10 replicated simulations. Note the instability of profiles across the replicates and number of phylostrata
without any expressed genes. None of the deviations at any phylostrata is significant by hypergeometric tests (ns). For comparison real phylostrati-
graphic profile for ectoderm are shown (dashed lines).
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conservation in a function-agnostic way. Carvunis et al. (2012)
proposed to model recently-evolved ORF sequences as inter-
mediate “proto-gene” stages that may harbor valuable infor-
mation to study the mechanisms leading to the emergence of
new genes even if they are not per se functional. Thus, they
identified 143 S. cerevisiae-specific ORFs on the basis of se-
quence conservation alone. Among these, 16 exhibited evi-
dence of selection at the intra-species level, suggestive of
function even though no protein product has been reported.
These 16 ORFs may thus cautiously be considered de novo
genes rather than proto-genes. Moyers and Zhang (2016a) re-
analyzed the evolutionary properties of these ORFs and
argued that 15/16 of them were neither species-specific nor
under selection. Based on their re-analyses these ORFs would
be neither proto-genes nor de novo genes.

We found that these discrepancies stem from the use of
differing methodologies between the two studies, both to
determine species-specificity and to estimate selection. The
15 ORFs under consideration partially overlap a more con-
served gene on another reading frame, as is frequent in the
compact yeast genome. To estimate selection, Carvunis et al.
(2012) calculated dN/dS on the full-length sequences based
on the assumption that the codon-level evolution of the al-
ternative reading frames would not overly influence

estimations of dN/dS of the ORF sequences of interest. They
found significant evidence for purifying selection. Moyers and
Zhang (2016a) challenged these assumptions and focused on
the overlap-free regions of the sequences to re-estimate dN/
dS, finding no evidence of selection. However, they reported
only between 0 and 3 SNPs per region. These low numbers
prevent any statistical assessment of whether the number of
non-synonymous SNPs compared to the synonymous ones is
more or less than what is expected under neutrality using a
Fisher test. There was, however, enough power to find evi-
dence of selection based on the full length ORFs.

Carvunis et al. (2012) established the S. cerevisiae-specificity
of these ORFs using phylostratigraphy on the overlap-free re-
gions of the sequences. In contrast, Moyers and Zhang (2016a)
this time considered the full-length ORF sequences and found
them to be more conserved. This is not surprising, since the
full-length sequences include sequences pertaining to other
genes on alternative reading frames that are indeed more
conserved. To determine unambiguously whether these 15
ORFs are species-specific or not, we performed here a synteny
analysis based Saccharomyces sensu stricto alignments (Cliften
et al. 2003; Kellis et al. 2003). We inferred the expected location
of potential homologues for the 15 ORFs by virtue of the
presence of homologues for the conserved genes partially

FIG. 4. Updated phylostratigraphic analyses of gene expression in fruit fly germ layers from Domazet-Lo�so et al. 2007. (A) Real phylostratigraphic
map using the latest sequence and expression databases. (B) Real phylostratigraphic map after the removal of genes that are found error-prone by
Moyers and Zhang (2015). Note that the profiles remain largely unaffected. Stars represent significances after hypergeometric test with Bonferroni
correction (* at 0.05 level, ** at 0.01 level and *** at 0.001 level).
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overlapping them in another reading frame. ORFs were found
in syntenic locations in 5 cases (YCL046W, YLR232W,
YNL105W, YOR055W, and YOR135C). The remaining ten
cases were confirmed as species-specific ORFs. Based on the
SNPs distribution on their full-length sequences, these ten
ORFs would thus be considered de novo genes. In absence
of additional functional evidence, however, it is more prudent
to consider them putative de novo genes or proto-genes.

In the original publication, Carvunis et al. (2012) had eval-
uated whether apparent novel sequences identified in their
phylostratigraphy were more likely to represent recent de
novo emergence versus sequence divergence (see supplemen
tary fig. S3, Supplementary Material online in the original
publication). They focused on sequences that appeared
species-specific and overlapped a gene that appeared ancient
and had one or more paralogues. They found that only 4 of
145 paralogues of these ancient genes also overlapped an-
other ORF. Although the apparent species-specific ORFs
could have recently and independently lost their paralogues
as well as all of their homologues in the Ascomycota phyl-
ogeny, the most parsimonious scenario is that they did
emerge de novo, after and independently from the duplica-
tion events. The prevalence of de novo emergence in the
young phylostrata was also supported by a positive correl-
ation between conservation level and number of paralogues
per ORF. Altogether, these analyses confirm that apparent
novel sequences detected by phylostratigraphy are enriched
in putative de novo genes and proto-genes, at least when
applied to closely related species.

Discussion
Estimating the power of BLAST from computer simulations is
a difficult task, since simulations can never capture the com-
plexity of real evolution. Nevertheless, Moyers and Zhang
(2015; 2016a) attempted to do so and reported that phylos-
tratigraphic analyses have a false negative rate of 11–14%. In
this manuscript, we have taken the approach of assuming
that Moyers and Zhang had correctly identified the se-
quences that are susceptible to appear young erroneously
due to being too short or to evolving too fast for BLAST to
find significant hits at the base of the phylogenetic tree. Under
these assumptions, we showed that these sequences repre-
sent a negligible fraction of the sequences that do in reality
appear young in phylostratigraphy (fig. 1). We also showed
that the number of error-prone sequences identified by mul-
tiple re-runs of simulations saturates rapidly (fig. 2), demon-
strating that the majority of sequences found young in
phylostratigraphy cannot be attributed to BLAST problems,
contrary to what has been suggested (Moyers and Zhang
2015; 2016a; McLysaght and Hurst 2016). Furthermore, pre-
viously reported patterns of gene emergence and evolution
reanalyzed here and by Moyers and Zhang (2015; 2016a) are
virtually unaffected by removing the error-prone sequences
(figs. 4,5 and 6). Some of the proposed significant phylostrati-
graphic patterns observed in the Moyers and Zhang’s simu-
lations have turned out to be attributable to an error in their
statistical analysis (fig. 3). Altogether, the studies by Moyers
and Zhang have revisited previously discussed important
issues but have failed to provide evidence for the existence

FIG. 5. Repeated phylostratigraphic analyses of disease genes in humans from Domazet-Lo�so and Tautz (2008). (A) Real phylostratigraphic map
after the removal of genes that are found error-prone by Moyers and Zhang (2015). Note that the profiles remain largely unchanged. The profile of
Moyers and Zhang (2015) simulated dataset (green line) is completely non-significant. Stars represent significances after hypergeometric test with
Bonferroni correction (* at 0.05 level, ** at 0.01 level and *** at 0.001 level). (B) Reanalyses of correlation patterns in Moyers and Zhang simulated
data. The correlation coefficients (Spearman’s rho) and associated P-values between gene count and ranked evolutionary time are in brackets.
Note that the total set of simulated genes as well as simulated disease genes negatively correlate with evolutionary time.
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FIG. 6. Distribution of six biological features for 5,878 S. cerevisiae ORF sequences with age inferred from real data (grey), for the same 5,878 ORF
sequences with age inferred in simulations (black) and for 5,209 ORF sequences shown to be robust to potential BLAST artifact because they are
assigned to the oldest age group in the simulation, with age inferred from real data (white). Vertical error bars represent standard error of the mean
(A and B), standard error of the proportion (C, D and E) or standard error of the median (F).
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of a hypothetical phylostratigraphic bias due to the use of
BLAST.

Circularity in the Simulations Explains Similarities
between Simulated and Real Sequences
We sought to understand why the simulation approach
yielded in some cases results that were somewhat comparable
to the real data. In their simulations, Moyers and Zhang (2015;
2016a) started with the real sequences–rather than in silico
generated random sequences–and let them evolve randomly
according to rate parameters inferred from real alignments
among closely related species. Hence, the true features of
these sequences are inherently still implied in the model, i.e.
the same sequences that are short or fast-evolving in reality
are also short or fast-evolving in the simulations. These se-
quences in turn are most likely to be misclassified in the
simulations since length and evolution rate affect the per-
formance of BLAST. Other features associated with the se-
quences, such as RNA expression levels or AUG context, were
then taken from the real data, without any shuffling. This
leads to circularity, since it has been well established that
recently emerged genes are short and evolve rapidly, in part
through studies of closely related species where no BLAST
error could reasonably be invoked (Reinhardt et al. 2013; Ruiz-
Orera et al. 2015). The effect becomes very evident when one
looks at the overlap between the real sequences placed at
particular nodes and the simulated equivalents (fig. 7). The
vast majority of sequences assigned a young age group in the
simulated phylostratigraphy (76% and 88% for D. mela-
nogaster and S. cerevisiae, respectively) were also assigned a
young age group in the original phylostratigraphies (although
usually not the same one). Given these overlaps, it is evident
that the characteristics of sequences of any given age group
will be somewhat comparable between simulated and real
data, since the sequences appearing young in the simulated
data comprises mostly of the same sequences appearing
young in the real data, with noise added and without disso-
ciating the age-influencing features (length and divergence
rate) from other features such as expression level or AUG
context.

It is this circularity, rather than the false negative rate of
BLAST per se (the alleged “phylostratigraphy bias”), that leads
to seemingly similar patterns in the real and simulated data.
Indeed, AUG context, proximity to TF binding sites or expres-
sion levels are associated with, but not contained within ORF
sequences. How could these features technically affect BLAST
similarity searches in any way? Moyers and Zhang (2016a) and

others (McLysaght and Hurst 2016) have proposed that in-
direct cross-correlations between the different features could
explain how a BLAST artifact would generate all these trends.
For example, expression level is known to be inversely corre-
lated with evolution rate (Pal et al. 2001; Drummond et al.
2006). It was argued that if evolution rate induces an ascer-
tainment bias in age estimation, this bias would transcend to
expression levels and explain why young sequences tend to
have low RNA abundance (Moyers and Zhang 2016a;
McLysaght and Hurst 2016). However, such argument would
ignore another known fact, i.e. length and expression level are
also inversely correlated (Jansen and Gerstein 2000). Thus,
under the same reasoning, the ascertainment bias due to
evolution rate would predict that young sequences are poorly
expressed, but the bias due to length would predict the op-
posite. Such reasoning is thus rather uninformative. If one
wanted to assess whether the false negative rate of BLAST
per se would give rise to such significant patterns, one could
randomly distribute the rate parameters across genome se-
quences to simulate their evolution along the phylogeny in a
manner that would be independent of their associated
features.

The Power of BLAST in Phylostratigraphic Analysis
We argue that Moyer and Zhang’s estimates are likely to be
exaggerated. In particular, the phylostratigraphy method-
ology used by Moyers and Zhang (2016a) to search for re-
mote homologues among their simulated yeast sequences is
less sensitive than the one deployed in the original analysis of
real sequences (Carvunis et al. 2012). In the original analyses,
the authors assigned to each ORF sequence the conservation
level of its most conserved paralogue, in an effort to avoid
underestimating conservation (Carvunis et al. 2012). Moyers
and Zhang (2016a) did not implement this “oldest paralogue
age” approach except in a single analysis, for which they did
not report the corresponding BLAST false negative rate.
Furthermore, where Moyers and Zhang (2016a) used the
program BLASTP, Carvunis et al. (2012) used three BLAST
programs: BLASTP, TBLASTX, TBLASTN. The use of three
BLAST programs necessarily results in a lower false negative
rate than the use of a single program, especially by enabling
comparisons against whole-genome databases rather than
against databases containing only annotated transcripts
and protein-coding genes. It is thus evident that the false
negative rates of the original phylostratigraphic analyses
must be lower than those estimated by Moyers and Zhang.

Table 1. Correlations (Kendall’s tau) Between Inferred ORF Age and Various Biological Features.

Comparison ORF Length RNA Abundance Proximity to TFBS CAI Purifying Selection Optimal AUG Context

All real ORFs 0.39** 0.26** 0.08* 0.31** 0.32** 0.13**
Real ORFs, without error-prone ones 0.33** 0.17** 0.07* 0.25** 0.23** 0.09*
Simulated ORFs 0.28** 0.26** 0.06* 0.21** 0.27** 0.12**

*P< 0.05, **P< 1E-16.
Note that the conservation levels in the original Carvunis et al. (2012) paper and the first half of table 1 from Moyers and Zhang (2016a) comprised level 0, which corresponds to
non-annotated S. cerevisiae ORFs, plus levels 1–10, estimated by phylostratigraphy on real or simulated sequences. Here, only levels 1–10 are considered.
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We also note that Moyers and Zhang (2016a) misinter-
preted Abrus�an (2013) by stating he “used Carvunis et al.’s
data to examine a number of additional gene properties that
he proposed to reflect the gradual genetic integrations of de
novo genes into cellular networks or maturation of protein
structures” [quote from (Moyers and Zhang 2016a)].
However, Abrus�an (2013) only used the classification of
very young ORFs from Carvunis et al. (“proto-genes”) but
drew from the orthology classification provided by
Wapinski et al. (2007) to classify all more conserved genes,
which constitute the majority of annotated ORFs in the S.
cerevisiae genome. The false negative rate associated with the
methodology used by Abrus�an (2013) was not estimated by
Moyers and Zhang (2016a).

Moyers and Zhang (2015) claimed that their estimates of
BLAST detection errors are conservative, in particular due to
not taking into account variations in rate heterogeneities
across time. Such changes are indeed well known in phylo-
genetic analysis under the term covarion pattern of protein
evolution (Penny et al. 2001). Moyers and Zhang (2015) simu-
late such a covarion pattern to assess BLAST performance in
an attempt to provide an even more realistic framework of
protein evolution. They find that BLAST performs indeed less
well under these conditions, with up to 67% error rate in
finding the oldest assignments. However, to obtain such a
high rate of misplacement, they had to assume unrealistic
parameters. This should already be evident from the fact
that such a high misplacement rate is not compatible with
real data, since most genes are actually mapped to the basal

nodes in all phylostratigraphies (e.g. Domazet-Lo�so and Tautz
2008; Tautz and Domazet-Lo�so 2011). In their covarion model
they shuffle over time the rates of up to 5% of sites per 50My
and state that shuffling 1% of sites per 50My is a “tiny amount
of covarion evolution” [quote from (Moyers and Zhang
2015)]. However, when 2,500My of evolution are simulated,
1% per 50My amounts to 50% of the protein in total. Actual
covarion proportions in well-studied real proteins of this age
were found to be around 10% (Wang et al. 2009). Hence, even
1% of sites per 50My is already beyond the realistic parameter
space, let alone the 5% where they find the highest error rate.
Even at the exaggerated 1% rate, the BLAST error is only around
18% [compare table 2 in (Moyers and Zhang 2015)]. The actual
interpretation should therefore be that BLAST, when used in
thephylostratigraphic framework, isveryrobustwithrespectto
the rate heterogeneities found in real data.

Phylostratigraphy and De Novo Evolution
Moyers and Zhang (2016a) concede that “nothing is wrong
with the theoretical model of de novo gene birth.” Their
fundamental point of contention with Carvunis et al.
(2012) and Abrus�an (2013), which goes beyond a mere sup-
posed 11% false negatives, is that the original publications did
not explicitly state why the observed trends would be ex-
pected from the de novo gene birth model. For example,
Moyers and Zhang wonder “why the refinement of biological
function of an ORF has to occur by increasing the ORF length
rather than by decreasing the length,” why “the mean hydro-
pathicity should decrease” etc. They are particularly surprised

FIG. 7. Pie charts representing sequences in the real phylostratigraphy and their relation to the sequences found error-prone in the Moyers and
Zhang simulations for D. melanogaster (A) and S. cerevisiae (B). The majority of sequences found young in real data are robust to BLAST artifact
(grey). Some sequences are found ancient in the real data but not in the simulated data (black), indicating that the phylostratigraphic methods
used in the real data were more sensitive than those used on the simulated data. The only sequences whose phylostratum may be have been
underestimated due to BLAST errors are in red. For Drosophila, a conservative approach was taken where we counted as susceptible to BLAST
artifact all sequences found young in at least one of ten simulation runs. For yeast, a single run was performed and analyzed. Note that the
proportion of sequences found young is larger in Drosophila (A) than in yeast (B) because the species tree considered is much deeper.
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to see that many of the trends continue even for older phy-
lostrata, “as if the maturation of de novo genes takes more
than 500 Myrs.” Let us here clarify these questions.

The prediction of the proto-gene model for de novo gene
birth is actually broader than any single descriptor of genes
such as length or hydropathicity: it is that the functional and
structural characteristic of ORFs should follow an evolution-
ary continuum between non-genic sequences and genes
(Carvunis et al. 2012). For example in the case of S. cerevisiae,
non-genic sequences are rippled with short ORFs thought to
appear and disappear by chance through random mutations.
In contrast, canonical protein coding genes with established
biological functions are on average much longer. Thus, the
continuum prediction of the de novo gene birth model is
that, in Ascomycota, ORF length should increase on average
with evolutionary conservation. This is not meant to imply
that ORF length would continuously increase, for all ORFs,
over extended periods of evolutionary time. Rather, the state-
ment simply indicates that, since the randomly appearing
ORFs are virtually all short, only those that have been main-
tained over longer periods of time can be long. This math-
ematically leads to an increase of average length over time-
since-emergence. This trend is indeed also seen in studies of
vertebrate taxa (Toll-Riera et al. 2009; Neme and Tautz 2014).
This by no means implies that established genes cannot
shorten due to the action of natural selection at some point
during their evolution, or that all proto-genes lengthen and
keep lengthening continuously even after their function is
established. The low values of correlations coefficients (table
1) illustrate well that these are merely statistical trends sup-
porting the existence of a continuum. One could imagine
that the continuum prediction would actually predict the
opposite trends in species where randomly appearing ORFs
would tend to be longer, as may be the case in the
Mycoplasmataceae lineage, which uses only two stop codons
(Tatarinova et al. 2016). Because the continuum prediction is
so general, it allows investigators to discover evolutionary
trends without a priori suppositions of how de novo proteins
should evolve. Rather, the data can be examined with an
open mind thanks to the power of phylostratigraphy.

Moyers and Zhang (2016a) discuss also whether there is a
prevalence of origination of new genes via gene duplication or
de novo evolution. Carvunis et al. (2012) have discussed long-
term trends and concluded that de novo evolution may be
more frequent. This was also the finding of Neme and Tautz
(2013) in vertebrates. The overall pattern of extensions of
transcript length, number of exons, length of ORFs and ac-
quisition of domains makes it more likely that new genes are
initially short. If one would want to explain such trends
through a duplication-divergence model, one would have
to assume either that short genes are more likely to be dupli-
cated, or that genes become shorter after duplication. Neither
of these trends have so far been reported.

The Future of Phylostratigraphy
The data presented here demonstrate that phylostratigraphic
analyses of patterns of gene emergence and evolution are
robust to the false negative rate of BLAST, whether it is in

the range of 5% or 15%. Still, future research is needed to
improve existing methods and date the emergence of se-
quences with even higher accuracy. Research in this direction
should consider not only BLAST false negatives, but also
BLAST false positives, where BLAST hits are spurious rather
than true homologues of the query sequences. A promising
approach is also to derive error estimates for the placement at
particular nodes (Liebeskind et al. 2016). Phylogenetic com-
parative methods, which account for phylogenetic structure
in the data, are helpful when one aims to correlate pheno-
types between multiple species on the phylogeny (Hejnol and
Dunn, 2016).

There is now overwhelming evidence that de novo gene
birth has occurred repeatedly in many lineages, where pos-
sible deficiencies of detection via BLAST play no practical role.
There is no reason to assume that the proven high rate of de
novo evolution has not occurred throughout evolutionary
history. Although the turnover of proto-genes seems very
high (Palmieri et al. 2014; Neme and Tautz 2016), some
have been retained, in particular at times of major radiations
and evolution of new lineages (Tautz and Domazet-Lo�so
2011). We concur with Moyers and Zhanǵs (2016a) sugges-
tions that gene-by-gene studies will provide deeper insights
into these questions. In particular, coupling phylostratigraphy
with synteny analyses may in the future enable to distinguish
between duplication-divergence and de novo evolution, at
least for sequences with traceable genomic locations across
species (McLysaght and Hurst 2016).

Methods
Scripts and data files necessary to reproduce our figures are
provided at: https://github.com/annerux/Domazet-Loso_
MBE_2016 (last accessed December 16, 2016).

Reanalysis of Moyers and Zhang 2015 Dataset and
Statistics
Moyers and Zhang kindly sent us their Drosophila dataset
with the list of genes that contained ectoderm, endoderm,
and mesoderm and their simulated phylostrata over ten
simulation runs. For our saturation analysis (fig. 2), we gen-
erated 15 random permutations of these ten simulation runs.
For each permutation, we calculated the number of
Drosophila melanogaster genes found young in the real phy-
lostratigraphy (lacking a detected ancestor at Cellular Life)
that could have been misplaced when considering the union
of 1 simulation, 2 simulations, . . ., 10 simulations. We then
averaged the numbers over the 15 random permutations. We
also repeated their ontogeny analysis and calculated hyper-
geometric tests with Bonferroni correction for all ten runs and
three germ layers (see supplementary table S2,
Supplementary Material online). We created our figure 3A
to match their figure 3C by using average values of ten runs.
To be able to calculate significances by hypergeometric tests
we rounded rational numbers obtained by averaging to inte-
gers. We also obtained from Moyers and Zhang their human
dataset with the list of 809 disease genes and simulated phy-
lostrata for 5217 human genes over ten simulation runs. To
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calculate statistics and visualize simulated disease genes we
averaged ten runs and rounded the obtained numbers to
integers. This procedure changed the number of disease genes
in the calculations to 811 (fig. 5 and in see supplementary
table S2, Supplementary Material online). Using this simu-
lated dataset we performed overrepresentation and correl-
ation analyses as in Domazet-Lo�so and Tautz (2008) (fig. 5).
Due to changes in gene annotations we were able to link 571
out of 585 error-prone genes to our previous study.

Phylostratigraphic Reanalysis of Drosophila
melanogaster
To allow broad sequence similarity searches we first built a
custom built protein database by combining complete gen-
omes from National Center for Biotechnology Information
(NCBI), Ensembl and Joint Genome Institute (JGI). In total,
we collected 113,834,351 protein sequences from 25,223 gen-
omes. To reduce the large redundancy of prokaryotic se-
quences (23,675 prokaryotic genomes) we clustered
prokaryotic parts of the database with the CD-HIT at 90%
identity (Li and Godzik 2006). After this procedure our data-
base contained 43,899,817 protein sequences. For compari-
son, in the original study we used a database that comprised
2,777,855 protein sequences (only around 2% of the present
database size).

We compared 13,389 protein sequences of Drosophila
melanogaster retrieved from the Ensembl database (Yates
et al. 2016) against the protein database by using the similarity
search algorithm BLASTP (Altschul et al. 1997) at E-value cut-
off of 1e-03 (Domazet-Lo�so et al. 2007). Using the obtained
BLAST output we mapped the fruit fly genes onto a consen-
sus phylogeny (12 phylostrata) using the most-distant BLAST
match above the significance threshold (BLAST E-value less
than 1e-03) as described in the original study (Domazet-Lo�so
et al. 2007). This updated Drosophila phylostratigraphy is
provided in see supplementary table S1, Supplementary
Material online.

Drosophila Expression Data and Statistics
We retrieved in situ hybridization expression data for 4,157
fruit fly genes that show tissue-specific expression during on-
togeny from the Berkeley Drosophila Genome Project
(Tomancak et al. 2002). In total, this set of genes contributes
to 38,627 expression domains expressed over multiple tissues
and the different stages of the ontogeny. In the original study
we had used 1,967 genes with 10,432 expression annotations
(only around 27% of the present expression dataset). We
divided the fruit fly expression dataset into subsets corres-
ponding to the specific germ layer (either ectoderm, endo-
derm, or mesoderm). For every germ layer, we performed an
over-representation analysis by comparing a frequency of ex-
pression domains in a phylostratum to a frequency in the
total dataset (expected frequency) (Domazet-Lo�so et al. 2007;
Domazet-Lo�so and Tautz 2008; Domazet-Lo�so and Tautz
2010b; �Sestak et al. 2013; �Sestak and Domazet-Lo�so 2015).
Obtained deviations, i.e. more or less expression than ex-
pected, are depicted in the figures by log-odds ratios and their
significance was tested by two-tailed hypergeometric tests

(Rivals et al. 2007) controlled for multiple comparisons via
a Bonferroni correction.

Fungal Data and Statistics
The conservation levels of S. cerevisiae ORFs was estimated by
Carvunis et al. (2012) and simulated by Moyers and Zhang
(2016a). Moyers and Zhang kindly provided us with the re-
sults of their simulations. Only 5,878 ORFs that were assigned
a conservation level by both studies are included here. ORF
characteristics (length, expression level etc.) were taken as in
Carvunis et al. (2012). Distributions, error bars and P-values
were computed using R scripts available at https://github.
com/annerux/Domazet-Loso_MBE_2016. Synteny analysis
for 15 ORFs was performed using the synteny viewer and
fungal alignment resources provided by SGD (Cliften et al.
2003; Kellis et al. 2003).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Remmert M, Biegert A, Hauser A, Söding J. 2012. HHblits: lightning-fast
iterative protein sequence searching by HMM-HMM alignment. Nat
Methods. 9:173–175.

Rivals I, Personnaz L, Taing L, Potier M-C. 2007. Enrichment or depletion
of a GO category within a class of genes: which test? Bioinformatics
23:401–407.

Ruiz-Orera J, Hernandez-Rodriguez J, Chiva C, Sabid�o E, Kondova I,
Bontrop R, Marqués-Bonet T, Alb�a MM. 2015. Origins of de novo
genes in human and chimpanzee. PLOS Genet. 11:e1005721.

Schlötterer C. 2015. Genes from scratch–the evolutionary fate of de
novo genes. Trends Genet. 31:215–219.

�Sestak MS, Bo�zi�cevi�c V, Bakari�c R, Dunjko V, Domazet-Lo�so T. 2013.
Phylostratigraphic profiles reveal a deep evolutionary history of the
vertebrate head sensory systems. Front Zool. 10:18.

�Sestak MS, Domazet-Lo�so T. 2015. Phylostratigraphic profiles in zebrafish
uncover chordate origins of the vertebrate brain. Mol Biol Evol.
32:299–312.

Tatarinova TV, Lysnyansky I, Nikolsky YV, Bolshoy A. 2016. The mysteri-
ous orphans of Mycoplasmataceae. Biol Direct. 11:2.

Tautz D. 2014. The discovery of de novo gene evolution. Perspect Biol
Med. 57:149–161.

Tautz D, Domazet-Lo�so T. 2011. The evolutionary origin of orphan
genes. Nat Rev Genet. 12:692–702.

Tautz D, Neme R, Domazet-Lo�so T. 2013. Evolutionary origin of orphan
genes. In: eLS. Chichester: Wiley. DOI: 10.1002/
9780470015902.a0024601

Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill X, Alb�a
MM. 2009. Origin of primate orphan genes: a comparative genomics
approach. Mol Biol Evol. 26:603–612.

Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis S, Richards S,
Ashburner M, Hartenstein V, Celniker S, et al. 2002. Systematic de-
termination of patterns of gene expression during Drosophila em-
bryogenesis. Genome Biol. 3:research0088.1–research0088.14.

Wang H-C, Susko E, Roger AJ. 2009. PROCOV: maximum likelihood
estimation of protein phylogeny under covarion models and site-
specific covarion pattern analysis. BMC Evol Biol. 9:225.

Wapinski I, Pfeffer A, Friedman N, Regev A. 2007. Natural history and
evolutionary principles of gene duplication in fungi. Nature
449:54–61.

Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D,
Cummins C, Clapham P, Fitzgerald S, Gil L, et al. 2016. Ensembl
2016. Nucl Acids Res. 44:D710–D716.

Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z, Li X, Ding Y, Yang S,
Wang W. 2008. On the origin of new genes in drosophila. Genome
Res. 18:1446–1455.

Domazet-Lo�so et al. . doi:10.1093/molbev/msw284 MBE

856


	msw284-TF1
	msw284-TF3

