Chapter 3

Interactome Networks

Anne-Ruxandra Carvunis’?, Frederick P. Roth"3, Michael A. Calderwood"?, Michael E. Cusick"?,

l1,2

Giulio Superti-Furga* and Marc Vida

! Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, *Department
of Genetics, Harvard Medical School, Boston, MA 02115, USA, *Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto,
Ontario M5S-3E1, Canada, & Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G-1X5, Canada, *Research Center for

Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria

Chapter Outline

Introduction 45
Life Requires Systems 45
Cells as Interactome Networks 46
Interactome Networks and Genotype—Phenotype
Relationships 47
Mapping and Modeling Interactome Networks 47

Towards a Reference Protein—Protein Interactome Map 48
Strategies for Large-Scale Protein—Protein Interactome
Mapping 48
Large-Scale Binary Interactome Mapping 49
Large-Scale Co-Complex Interactome Mapping 50

Drawing Inferences from Interactome Networks 51
Refining and Extending Interactome Network Models 51

INTRODUCTION

Life Requires Systems

What is Life? The answer to the question posed by
Schrodinger in a short but incisive book published in 1944
remains elusive more than seven decades later. Perhaps
a less ambitious, but more pragmatic question could be:
what does Life require? Biologists agree on at least four
fundamental requirements, among which three are palpable
and easily demonstrable, and a fourth is more intangible
(Figure 3.1). First, Life requires chemistry. Biomolecules,
including metabolites, proteins and nucleic acids, mediate
the most elementary functions of biology. Life also requires
genes to encode and ‘reproduce’ biomolecules. For most
organisms, cells provide the fundamental medium in which
biological processes take place. The fourth requirement is
evolution by natural selection. Classically, these ‘four great
ideas of biology’ [1] have constituted the main intellectual
framework around which biologists formulate biological
questions, design experiments, interpret data, train younger
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generations of scientists and attempt to design new thera-
peutic strategies.

The next question then should be: even if we fully
understood each of these four basic requirements of
biology, would we be anywhere near a complete under-
standing of how Life works? Would we be able to fully
explain genotype—phenotype relationships? Would we be
able to fully predict biological behaviors? How close would
we be to curing or alleviating suffering from human
diseases? It is becoming clear that even if we knew
everything there is to know about the four currently
accepted requirements of biology, the answer to ‘“What Life
is” would remain elusive.

The main reason is that biomolecules do not function in
isolation, nor do cells, organs or organisms, or even
ecosystems and sociological groups. Rather, biological
entities are involved in intricate and dynamic interactions,
thereby forming ‘complex systems’. In the last decade,
novel biological questions and answers have surfaced, or
resurfaced, pointing to systems as a fifth fundamental
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FIGURE 3.1 Systems as a fifth requirement for Life.

requirement for Life [2]. Although conceptual, systems
may turn out to be as crucial to biology as chemistry, genes,
cells or evolution (Figure 3.1).

Cells as Interactome Networks

The study of biological systems, or ‘systems biology’,
originated more than half a century ago, when a few
pioneers initially formulated a theoretical framework
according to which multiscale dynamic complex systems
formed by interacting biomolecules could underlie cellular
behavior. To explain cellular differentiation, Delbriick
hypothesized the existence of positive feedback circuits
required for ‘bistability’, a model in which systems would
remain stably activated after having been turned on, and
conversely, remain steadily inactive once turned off [3].
Empirical evidence for feedback regulation in biology first
emerged in the 1950s. The Umbarger and Pardee groups
uncovered enzymatic feedback inhibition [4,5], and Nov-
ick and Weiner described the positive feedback circuit
regulating the lac operon [6]. Monod and Jacob subse-
quently proposed how negative feedback circuits could
account for homeostasis and other oscillatory phenomena
observed in many biological processes [7]. These teleo-
nomic arguments were later formalized by René Thomas
and others in terms of requirements for cellular and whole
organism differentiation based on positive and negative
feedback circuits of regulation, using Boolean modeling as
powerful simplifications of cellular systems [8] (see
Chapter 10).
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Equally enlightening theoretical systems properties
were imagined beyond small-scale regulatory mechanisms
composed of just a few molecules. Waddington introduced
the metaphor of ‘epigenetic landscape’, whereby cells
respond to genetic, developmental and environmental cues
by following paths across a landscape containing peaks and
valleys dictated by interacting genes and gene products [9].
This powerful idea, together with theoretical models of
‘randomly constructed genetic nets’ by Kauffman [10],
suggested that a cellular system could be described in terms
of ‘states’ resulting from particular combinations of genes,
gene products, or metabolites, all considered either active
or inactive at any given time. Complex wiring diagrams of
functional and logical interconnectivity between biomole-
cules and genes acting upon each other could be imagined
to depict how systems ‘travel’ from state to state over time
throughout a ‘state space’ determined by intricate, sophis-
ticated combinations of genotype, systems properties and
environmental conditions. These concepts, elaborated at
a time when the molecular components of biology were
poorly described, remained largely ignored by molecular
biologists until recently (see Chapter 15).

Over the past two decades, scientific knowledge of the
biomolecular components of biology has dramatically
increased. In particular, sequencing and bioinformatics
have allowed prediction of coding and non-coding gene
products at genome scale. Transcriptome sequencing
approaches have revealed the existence of transcripts that
had escaped prediction and which often remain of unknown
function (see Chapter 2). Additionally, the list of known
molecular components of cellular systems, including
nucleic acids, gene products and metabolites, is length-
ening and becoming increasingly detailed. With these
advances came a humbling realization, best summed up as
‘too much data, too few drugs’ (see Chapter 8). It has
become clearer than ever that knowing everything there is
to know about each biomolecule in the cell is not sufficient
to predict how the cell will react as a whole to particular
external or internal perturbations.

Functional interactions, perhaps more so than indi-
vidual components, mediate the fundamental requirements
of the cell. Consequently, one needs to consider biological
phenomena as the product of ensembles of interacting
components with emergent properties that go beyond those
of their individual components considered in isolation. One
needs to step back and measure, model, and eventually
perturb nearly all functional interactions between cellular
components to fully understand how cellular systems work.
In analogy to the word genome, the union of all interactions
between all cellular components is termed the ‘inter-
actome’. Our working hypothesis is that interactomes
exhibit local and global properties that relate to biology in
general, and to genotype—phenotype relationships in
particular.
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Interactome Networks and
Genotype—Phenotype Relationships

Since drafts of a composite reference human genome
sequence were released 10 years ago, powerful techno-
logical developments, such as next-generation sequencing,
have started a true revolution in genomics [11—14].
With time, most human genotypic variations will be
described, together with large numbers of phenotypic
associations. Unfortunately, such knowledge cannot trans-
late directly into new mechanistic understanding or thera-
peutic strategies, in part because the ‘one-gene/one-
enzyme/one-function’ concept developed by Beadle and
Tatum oversimplifies genotype—phenotype relationships
[15]. In fact, Beadle and Tatum themselves state so in the
introduction of their groundbreaking paper that initiated
reductionism in molecular biology: ‘An organism consists
essentially of an integrated system of chemical reactions
controlled in some manner by genes. Since the components
of such systems are likely to be interrelated in complex
ways, it would appear that there must exist orders of
directedness of gene control ranging from simple one-to-
one relations to relations of great complexity.’

So-called complex traits provide the most compelling
evidence of complexity between genotypes and pheno-
types in human disease. Genome-wide association studies
have revealed many more contributing loci than originally
anticipated, with some loci contributing as little as a few
percent to the heritability of the phenotype(s) of interest.
Simple Mendelian traits are not immune to complex
genotype—phenotype relationships either. Incomplete
penetrance, variable expressivity, differences in age of
onset, and modifier mutations are more frequent than
generally appreciated. These discrepancies in the one-
gene/one-function model appear across all phyla. In
worms, for example, where self-fertilization is possible
and growth conditions are easily controllable, it is not
uncommon to observe that a significant proportion of
mutant animals exhibit a near wild-type phenotype [16,17]
(see Chapter 19).

Genome-wide functional genomic and proteomic
experiments also point to greater complexity than antici-
pated, leading one to ask fundamental questions about gene
function and evolution. How could a linear view of gene
function account for the seemingly small proportions of
essential genes [18]? How do genes become essential
during evolution in the first place? How to explain that
genes that are genetically required for particular biologic
processes are not necessarily transcriptionally regulated
during those same processes [19]? How to account for
increasing reports of ‘protein moonlighting’, where specific
gene products appear to be necessary for multiple biolog-
ical processes [20—22]? We argue that viewing and
modeling cells as interactome networks will help unravel
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FIGURE 3.2 Interactome networks and genotype—phenotype
relationships.

the complexity of genotype—phenotype relationships,
including susceptibility to human disease (Figure 3.2).

Mapping and Modeling Interactome
Networks

In the path towards deciphering the mechanisms underlying
genotype—phenotype relationships, it helps to abstractly
simplify the complexity of interactomes by modeling.
Interactomes can be effectively modeled as network
representations of biological relationships among biomol-
ecules. This abstraction converts a complex web of bio-
logical relationships into a graph, allowing the application
of intuition and mathematical concepts of graph theory.

The power of graph theory in revealing emergent
properties of complex systems is exemplified by a social
science experiment of the 1960s. Stanley Milgram
attempted to follow the path of letters sent through the mail
in order to measure the average number of ‘degrees of
separation’ between people, thereby providing a network
representation of human society. He famously found that
humans are connected on average at a distance of six
degrees from each other, and our vision of the human
population on earth immediately became that of a ‘small-
world’ [23]. From politics to social media to modern
journalism, Milgram’s discovery still resonates today, and
probably will for years to come.

In a network representation of interactomes, nodes
represent biomolecules and an edge between two nodes
indicates a biological relationship between the corre-
sponding biomolecules. In the cell, multiple types of
biomolecule, e.g., genes, proteins, RNAs, regulatory
elements, or small-molecule metabolites, can be connected
by multiple types of physical or functional biological
relationship. These can be combined into ‘multicolor’
interactome network representations, where node colors
represent biomolecule types and edge colors represent
biological relationship types, refining complex biological
processes [24]. Binding of transcription factors to DNA
regulatory elements (physical relationship), regulation of
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target genes by transcription factors or micro-RNAs (direct
functional relationship), and similarity of expression
profiles of genes across multiple conditions (profile-based
functional relationship) form interrelated interactome
networks. Study of these interactome networks, individu-
ally or together, is contributing key insights into the cellular
control of gene expression (see Chapters 2 and 4).

Material flow, such as in metabolic reactions, and
information flow, such as in transduction pathways, can be
represented mathematically by edge direction (see Chap-
ters 4, 5 and 11), while edge thickness, or weight, can
symbolize the relative strength of biological relationships.
Additionally, interactome network models can incorporate
logic (see Chapters 10 and 11) or dynamics (see Chapters
12, 13, 14 and 16). Eventually, the aim is to understand
how different interactomes are integrated together to form
the cellular systems that we believe underlie genotype—
phenotype relationships.

For this aim to be reached, complete single-color
interactome network maps first need to be assembled.
Physical interactions between proteins, or protein interac-
tions, constitute the fundamental backbone of the cell and
are instrumental for most biological processes, including
signaling, differentiation and cell fate determination. This
chapter describes the mapping and modeling of protein—
protein interactome networks, where edges connect pairs of
proteins that physically associate with one another directly
or indirectly.

TOWARDS A REFERENCE
PROTEIN—PROTEIN INTERACTOME MAP

Most individual proteins execute their biological functions
by interacting with one or several other proteins. Protein
interactions can form large protein complexes such as the
proteasome, in which ~50 protein subunits act together to
degrade other proteins and play a key role in cell protein
homeostasis. The existence of such molecular machines,
performing functions that no single protein can assume,
demonstrates that protein—protein interactomes exhibit
emergent properties beyond the sum of all individual
protein interactions.

There is no such thing as a typical protein interaction.
Protein interactions occur in vivo with a wide range of
dissociation constants and dynamics. Proteins associated
by strong and permanent interactions with low dissociation
constants tend to form protein complexes. Protein interac-
tions may also be simultaneously strong and transient,
when controlled by the expression level of either interact-
ing partner using ‘just-in-time’ assembly, by a change in
subcellular location of one protein or the other, or by
conformation changes induced by post-translational
modification. For example, GTP hydrolysis controls the
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interaction between the o and B subunits of G-proteins,
which in turn rapidly switches entire signaling pathways on
or off [25]. Many protein interactions are weak and tran-
sient with high dissociation constants, as are associations
between membrane receptors and extracellular matrix
proteins that assist cellular motility [25].

Forthcoming models of protein—protein interactomes
will undoubtedly involve sophisticated network represen-
tations integrating weighted and dynamic protein interac-
tions [26]. For protein interactions such as those involved in
signaling, interactome network models can also incorporate
edge direction. Many protein interactions, such as sub-
unit—subunit interactions within protein complexes, are
best described with undirected edges [27—29]. It is not
possible yet to assemble a proteome-scale interactome
network model that integrates strength, dynamics and
direction of edges because available technology is only
beginning to allow experimental measurements of such
interaction properties. Even a catalog of all possible protein
interactions has not yet been compiled for any single
species. Today’s challenge lies in obtaining nearly
complete but static, undirected and unweighted reference
protein—protein interactome maps.

Strategies for Large-Scale Protein—Protein
Interactome Mapping

Three fundamentally different but complementary strat-
egies have been deployed towards this goal: i) curation
of protein interaction data already available in the
scientific literature [30]; ii) computational predictions of
protein interactions based on available orthogonal infor-
mation, such as sequence similarity or the co-presence of
genes in sequenced genomes [31]; and iii) systematic,
unbiased high-throughput experimental mapping strate-
gies applied at the scale of whole genomes or proteomes
[32].

Literature-curated interactome maps present the
advantage of using already available, experimentally
derived information, but are limited by the inherently
variable quality of the curation process [33—35]. A
randomly chosen set of literature-curated protein interac-
tions supported by a single publication was shown to be
approximately three times less reproducible than a refer-
ence set of manually curated protein interactions supported
by multiple publications [36]. Another caveat of literature-
curated interactome maps is that they mostly derive from
hypothesis-driven research, which often focuses on a few
proteins deemed to be scientifically interesting [37]. Some
‘star proteins’, such as the cancer-associated product of the
TP53 gene [38], are interrogated for protein interactions
much more often than other proteins, resulting in an
artificial increase of their apparent connectivity relative to



Chapter | 3 Interactome Networks

other proteins. For these reasons, literature-curated maps
cannot be viewed as representative samples of the under-
lying interactome, and inferring systems-level properties
from literature-curated protein—protein interactome maps
can be misleading [39]. Nevertheless, literature-curated
protein—protein interactome maps are instrumental in
deriving hypotheses about focused biological mechanisms.

Computational predictions have the advantage of being
applicable at genome or proteome scale for only a moderate
cost. We discuss the numerous computational strategies
that have been designed to predict protein interactions in
the section of this chapter entitled ‘Drawing inferences
from interactome networks’. In brief, computational
predictions apply ‘rules’ learned from current knowledge to
infer new protein interactions. Albeit potent, this approach
is also intrinsically limiting since the rules governing bio-
logical systems in general, and protein interactions in
particular, remain largely undiscovered. Therefore, pre-
dicted protein—protein interactome maps, like literature-
curated interactome maps, should be handled with caution
when modeling biological systems.

High-throughput experimental interactome mapping
approaches attempt to describe unbiased, systematic and
well-controlled biophysical interactions. Two comple-
mentary approaches are currently in widespread use for
high-throughput experimental interactome mapping
(Figure 3.3): i) testing all combinations of protein pairs
encoded by a given genome to find all binary protein
interactions that can take place among them and uncover
the ‘binary interactome’; and ii) interrogating in vivo
protein complexes in one or several cell line(s) or tissue(s)
to expose the ‘co-complex interactome’. Binary inter-
actome maps contain mostly direct physical interactions, an
unknown proportion of which may never take place in vivo
despite being biophysically true. On the other hand, co-
complex interactome datasets are composed of many
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indirect, and some direct, associations that mostly do take
place in vivo.

Large-Scale Binary Interactome Mapping

The technologies that enabled large-scale binary inter-
actome mapping were first developed in the 1990s by a few
groups [40—45]. The following years saw significant
progress towards assembling binary protein— protein
interactome maps for model organisms such as the yeast
Saccharomyces cerevisiae [39,46—49], the worm Caeno-
rhabditis elegans [50—53], the fly Drosophila mela-
nogaster [54], and most recently the plant Arabidopsis
thaliana [55—57]. Similar efforts have been deployed to
map the human binary interactome [36,58—62].

Large-scale binary interactome mapping is amenable to
only a few existing experimental assays [47,48,63] and is
carried out primarily by ever- improving variants on the
yeast two-hybrid (Y2H) system [64,65]. The Y2H system is
based on the reconstitution of a yeast transcription factor
through the expression of two hybrid proteins, one fusing
the DNA-binding (DB) domain to a protein X (DB-X) and
the other fusing the activation domain (AD) to a protein Y
(AD-Y) [65]. In the last 20 years the technique has been
streamlined to increase throughput and quality controlled to
avoid foreseeable artifacts [32,43,45,53,66—69]. Today,
Y2H can interrogate hundreds of millions of protein pairs
for binary interactions, in a manner that is both highly
efficient and highly reliable.

The contemporary Y2H-based high-throughput binary
interactome mapping pipeline consists of two essential
stages: primary screening and secondary verification
[64,70,71]. Large collections of cloned genes are trans-
ferred into DB-X and AD-Y expression vectors, then effi-
ciently screened using either a pooling or a pairwise
strategy [49,51,64,72—74]. All protein pairs identified in

FIGURE 3.3 Binary and co-complex protein-
interaction detection methods and network
representations.
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the primary screen are re-tested independently by Y2H
using fresh yeast cells (verification). In our most recent
Y2H-based binary interactome mapping efforts, DB-X/
AD-Y pairs that score positive in at least three out of four
replicates during the verification step were considered
high-quality verified Y2H interactions [55,57]. Further
sequencing can be undertaken to confirm the identity of the
reported protein pairs [55]. Ultimately, this pipeline can
systematically generate large numbers of highly repro-
ducible binary protein interactions.

Reproducibility, however, does not necessarily guarantee
high dataset quality. Technical artifacts could result in protein
pairs appearing reproducibly positive despite actually being
false positives. To obtain a quantitative estimate of the quality
of a protein—protein interactome dataset, an integrated
empirical framework for quality control of interactome
mapping was proposed in 2009 [36]. At the heart of this
endeavor was the recognition that high-throughput inter-
actome mapping needed to be rigorously calibrated, like any
well-controlled reliable small-scale experiment. Using this
framework, protein—protein interactome maps generated
with the mapping pipeline described here were shown to have
high precision (80—100% of reported protein pairs are true
positives) but low sensitivity (~10—15% of all interrogated
true positive interactions are captured in the experiment)
[36,39,52,55]. Because of this low sensitivity, binary inter-
actome maps generated so far represent small fractions of the
underlying true interactomes. This explains why only
a marginal number of protein interactions are found in
multiple binary interactome maps assembled independently
for the same organism [36,39,55].

How far along is the journey towards a complete binary
protein—protein interactome reference map? The answer
requires an estimation of the size of such a reference map for
any given species. Many statistical methods have been
designed to this end, often based on dataset overlap and
hypergeometric distributions [36,75—82]. Mapping of the
binary interactome of the model organism S. cerevisiae is
estimated to be the closest to completion, with ~6—30%
coverage already obtained (~2900 binary protein interactions
of demonstrated high technical quality detected, out of an
estimated total of 10 000—45 000, assuming one splicing
isoform per gene) [39,46,49]. However, most of the task
remains to be accomplished.

How can this daunting challenge be overcome? Inspi-
ration is drawn from the history of genome sequencing,
which underwent a disruptive shift in the late 1990s. Like
sequencing at that time, Y2H-based mapping is currently
seeing more efficient automation, stricter quality control
and innovative technology development which together are
increasing productivity while reducing cost [36,62,83]. It is
unlikely that Y2H-based mapping alone will be sufficient to
complete a comprehensive reference binary protein—pro-
tein interactome map. No single interaction assay may ever
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be capable of doing so [84,85]. Individual protein interac-
tion assays seem optimized for the detection of a certain
subtype of binary interactions, although the biochemical
and structural biases of these assays remain poorly under-
stood. Intuitively, interactions involving membrane
proteins would be expected to perform better in the cell
membrane environment of the split-ubiquitin system than
in the nuclear environment of the Y2H system [65,47]. It
will therefore be necessary to join forces and use multiple
assays to fully map the reference binary interactome of any
organism. We are confident that this challenge can be
overcome within the next decade.

Large-Scale Co-Complex Interactome
Mapping

To fully map the reference interactome, it is operationally
helpful to go beyond binary protein interactions and
identify protein complexes within cells [86]. Protein
complexes typically contain five to six different proteins,
within a wide range from two to hundreds in a variety of
stoichiometries [87]. The concentration and binding
affinity of the protein subunits determine complex
assembly according to the law of mass action [88]. Two
proteins in isolation may have only weak or no propen-
sity to form a binary interaction. Owing to cooperative
and allosteric effects, a third protein may have a high
affinity to both simultaneously, so that the resulting
protein complex is considerably more stable than the sum
of its component affinities [89]. Hence, even if a refer-
ence binary protein—protein interactome had been fully
mapped, co-complex interactome network maps would
still provide novel protein interactions and bring
a fundamentally different view of interactome organiza-
tion. The characterization of entire protein complexes, as
they assemble in cells, is a necessary route to gather
information on gene function and biological systems
[90—94].

The most common methodologies currently used for the
mapping of co-complex interactomes rely on protein
complex purification followed by identification of constit-
uent proteins by mass spectrometry. These experiments
necessitate a trade-off between throughput, reproducibility
and physiological setting. Cellular proteins range in their
abundance up to seven orders of magnitude in humans [95]
and five in yeast [96]. Protein complexes therefore need to
be purified from the soup of cellular extracts without losing
too many components, while at the same time avoiding
those proteins that are extremely abundant and co-purify
artificially [97—100]. A fraction of protein complexes may
consist of dedicated elements, but most complexes also
include abundant proteins that participate in several other
complexes, such as chaperone proteins. Purification
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strategies tailored for individual complexes typically make
use of high-affinity antibodies directed against a specific
complex member, or use other affinity matrices such as
DNA, RNA, metabolites, or drugs, inspired by the specific
biochemical properties of the complex. These approaches
have the important advantage of targeting endogenous,
natural forms of the complexes, but they are not readily
amenable to proteome scale.

Proteome-scale co-complex interactome mapping
employs a variety of strategies that attach epitope tags to
bait proteins. These include DNA engineering as well as
post-translational protein engineering [101—106]. The
purified protein complexes are then systematically treated
with proteases to release peptides, which then are frac-
tionated by one- or two-dimensional liquid chromatog-
raphy. Amino acid sequences are then imputed based on the
mass and charge of the resulting peptides using mass
spectrometry readouts. If applied rigorously and with
attention to statistical significance, proteins containing
these peptide sequences can be derived with a low false
discovery rate. Proteins may also go undetected for
a number of reasons, leading to false negatives in co-
complex interactome maps. Quantitative estimation of
dataset quality using a framework analogous to the one
implemented for binary interactome maps [36] has now
been implemented once for a D. melanogaster co-complex
interactome map, which demonstrated high sensitivity
[107].

How should we interpret the long lists of proteins that
typically are the readouts of the mass spectrometry anal-
yses of co-purified proteins? All successful bioinformatics
approaches to assign co-complex memberships to co-
purified proteins rely on network analyses, considering
each protein as a node and each co-purification relationship
as an edge. Algorithms can isolate subnetworks that are
highly interconnected or completely interconnected, and
then compute affiliation to one subnetwork compared to
overall frequency to determine the most likely co-complex
associations [91,108—110]. High-quality datasets are
obtained from multiple redundant purifications over
a single search space, which may encompass whole
genomes, as was done for S. cerevisiae, Escherichia coli,
Mycoplasma  pneumonia, and D. melanogaster
[87,91,104,107,111,112], or selected pathways and
subnetworks as was done for human [113—118]. The more
redundant the dataset, the more reliable complex prediction
will be, leading to ever finer granularity of the resolution of
the map.

When two proteins belong to the same protein complex
they may not necessarily be in direct physical contact
(Figure 3.3). Hence, edges in a network representation of
co-complex interactomes have a very different meaning
than edges in a network representation of binary inter-
actomes. Most literature-curation databases are struggling
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to design the appropriate infrastructure that will allow users
to distinguish intuitively between these two types of edge
[119]. Curation, storage, representation and analysis of co-
complex interactome data are key challenges in computa-
tional systems biology.

Regardless, the emerging picture of mass spectrometry-
derived co-complex interactome maps is that of a modular
organization. Protein complexes appear to assemble from
a limited number of core modules, with small sub-
complexes as well as individual proteins binding to the core
modules and to each other. Modular organization creates
the possibility of achieving functional diversity through
combinatorial effects while maintaining highly interde-
pendent central parts of molecular machines invariable
[120—123].

DRAWING INFERENCES FROM
INTERACTOME NETWORKS

Combining analyses of network topology with exogenous
data integration can help make sense of complex systems.
This ability is well illustrated in a famous study of high-
school friendships across the USA [124]. In the topological
structure of networks where nodes are students and edges
are friendships, communities of tightly linked high-school
friends emerge (see Chapter 9). When nodes in these
topological communities are colored with ethnicity infor-
mation, the extent of ethnic segregation in each high school
is revealed (Figure 3.4). Similarly, binary and co-complex
protein—protein interactome network maps provide ‘scaf-
fold’ information about cellular systems. When inter-
actome maps are analyzed in terms of topology and
integrated with orthogonal functional information, the
resulting knowledge allows investigators to imagine novel
hypotheses and answer basic questions of biology
(Figure 3.4) [125,126].

Refining and Extending Interactome Network
Models

A major aim of the analysis of interactome network maps is
to obtain better representations of the underlying inter-
actome itself, since available maps are imperfect and
incomplete. Given topological and exogenous biological
data, which proteins are most likely to interact with a given
protein of interest for which few or no protein interactions
have been described? Which binary interactions and co-
complex associations are the most reliable, and therefore
worthy of mechanistic follow-up?

When there are multiple sources of experimental
evidence supporting a particular protein interaction, the
evidence can be combined to generate a confidence score
for this interaction. This integration can be restricted to
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FIGURE 3.4 Drawing inferences from complex networks through modeling.

experimental evidence that directly relates to the protein
interaction [84], or can include a broader range of bio-
logical relationships. Methods are emerging to score the
likelihood that a given protein pair will physically
interact, given all the other known single-color relation-
ships about that protein pair. Prediction strategies that
model single-color relationships as being independent of
one another have proved worthwhile [54,127,128]. More
sophisticated approaches that explicitly model the

interdependency between multiple interaction types
further improve the quality of interaction predictions
[128—133].

With such confidence scores, interactome networks can
be represented as probabilistic networks in which each
edge is assigned a weight representing the posterior prob-
ability that the edge is real. Sampling many ‘deterministic’
subgraphs from the probabilistic network measures the
fraction of sampled networks containing a path between
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a known protein complex and a candidate protein member
of that complex, thus predicting new members of partially
defined protein complexes [133,134].

The topology of interactome networks can be exploited
to predict novel protein interactions. Network motifs are
patterns of interconnection involving more than two nodes
[135,136]. Triangles and larger densely connected
subgraphs are more frequent in most protein—protein
interactome networks than would be expected by chance, in
turn rendering candidate protein interactions that complete
many new triangles in the network more likely to be true
interactions [137,138]. Accordingly, identification of
densely connected subgraphs in an interactome network
can help identify protein complexes [108,139—142]. Other
methods exploiting network topology parameters have
proved useful in predicting physical interaction networks of
other organisms [54].

A promising strategy for interaction prediction is to
produce multicolor network motifs derived by integrating
protein—protein interactome networks with genetic inter-
action networks or phenotypic profile similarity networks
(see Chapters 5 and 6). Protein interactions tend to connect
genes with related phenotypes, as was first discerned in
small-scale studies of protein interactions, and later
demonstrated for large-scale interactome maps and
systematic phenotyping data [50,143—147]. It follows that
genetic interaction profiles can be used to predict protein
complexes [18,143,146,148—150]. On the basis of the
strength of the physical and genetic interactions of
a particular protein pair it is possible to assess the likeli-
hood of that protein pair operating either within a protein
complex or connecting two functionally related protein
complexes [151]. The predictive power of these integrative
approaches lies in the systems organization through which
interactomes underlie genotype—phenotype relationships.

Predicting Gene Functions, Phenotypes
and Disease Associations

Early in the implementation of Y2H, Raf kinase was
imputed as an oncogene based on its specific interaction
with H-Ras [152]. This type of reasoning is behind the
principles of ‘guilt-by-association’ and ‘guilt-by-profiling’,
whereby a functional annotation can be transferred from
one gene/protein to another ‘across’ biological relation-
ships, or ‘across’ profiles of biological relationships
[153—157]. Function prediction methods based on these
principles either make assumptions about the independence
of evidence types, or model the interdependencies between
edge types [158]. Protein A, of unknown function, can be
said with some likelihood to be involved in the same bio-
logical process as protein B, of known function, if A and B
belong to the same protein complex, or if their profile of
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membership in modules identified from the interactome
network are similar [141]. Protein interactions, mostly
transferred by orthology from human, allow the most
precise predictions of gene function in mouse genes among
several data types [159].

Topological modules in interactome networks most
likely correspond to specific biological processes or func-
tions [160]. It follows that identifying modules containing
genes/proteins of both known and unknown function can
help assign function to uncharacterized genes/proteins.
Combining topological modules with other genomic or
proteomic data in multicolor networks brings about more
biologically coherent units [128,161—165].

That protein interactions mediate protein functions, and
that protein interactions tend to connect genes/proteins with
related phenotypes just as they tend to connect genes/
proteins with related functions, suggests that protein
interactions can be used to predict new disease genes.
Mutations causative for ataxia, a neurodegenerative
disorder, affect proteins that share interacting partners. A
subset of these shared partners have been found to be
associated with neurodegeneration in animal models
[59,166]. The ability of interactome maps to highlight new
candidate disease genes and disease modifier genes had
been anticipated in the early large-scale binary interactome
maps [60,61]. With large-scale interactome maps available
for human, various computational efforts systematically
prioritize potential human disease genes based on the
patterns of protein interactions [93,167—171]. Current
efforts to predict human gene function and disease
phenotype are now striving to combine several orthogonal
large-scale genomic and proteomic data types [172,173].

Progress in this area will depend increasingly on efforts
to establish benchmark data to allow rigorous comparisons
among the evolving methods. Benchmarking has happened
preliminarily for gene function prediction [159]. For
prediction of phenotype or disease most current methods
rely upon a handful of known ‘training examples’ — small
sets of genes known to be associated with the phenotype or
disease. This strategy has its worth, but eventually methods
that can predict disease genes in the absence of known
examples will also be needed. Genome-wide association
(GWA) studies provide an emerging example where
predictions can be attempted without training examples.
Although GWA studies serve to identify a genomic locus
associated with a disease, they often cannot pinpoint which
single gene of several or many resident within the locus is
the actual disease gene. Where multiple GWA loci are
linked to a single disorder or trait, the subset of genes that
exhibit between-locus protein interactions, or other types of
biological relationships, may be the most likely to be the
causal disease genes [168,169,174].

It may be possible to predict phenotypes and prioritize
disease genes based on local network topology alone. One
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particularly informative and well-studied network topology
parameter is node connectivity, or ‘degree’. Protein—pro-
tein interactome networks follow a power-law distribution,
where most nodes have a low connectivity and a few nodes,
the network ‘hubs’, have a high connectivity (see Chapter
9). This ‘scale-free’ degree distribution is also observed in
many other networks, the internet being a particularly
noteworthy example, and has important consequences for
network robustness. The overall structure of a scale-free
network is hardly affected by the removal of random nodes,
but is highly sensitive to removal of hubs [175]. This scale-
free behavior has clear applications in the design of
electrical power grids, but what does it mean for
protein—protein interactome networks?

About a decade ago, it was reported that hubs in the
protein—protein interactome of S. cerevisiae are prefer-
entially essential, meaning that knockouts of the corre-
sponding genes tend to be unviable [176]. This initial
observation was biased by the inclusion of literature-
curated interactome maps, where ‘star’ proteins that have
an artificially high connectivity also tend to be essential
[39,176]. There is instead unbiased evidence of a correla-
tion between degree and essentiality in co-complex
interactome networks, but not in binary interactome
networks [39,177]. Deeper examination clearly demon-
strated a correlation between connectivity in an inter-
actome network map and functional pleiotropy in
S. cerevisiae [39]. Thus, the connectivity of a protein does
relay information about the phenotype of its correspond-
ing gene. Together with other topological information,
network connectivity may one day be used to predict new
disease genes, as suggested by the observation that
proteins associated with cancer are preferentially hubs in
the human interactome [178].

Assigning Functions to Individual
Interactions, Protein Complexes
and Network Motifs

Functional genomics experiments and function prediction
algorithms are typically designed to uncover the biological
roles of genes and gene products. We argue that if inter-
actome networks underlie genotype—phenotype relation-
ships, then edges (protein interactions) should be
associated with functions and phenotypes just as nodes
(proteins) are.

Fanconi anemia (FA) is a rare chromosome instability
disorder associated with congenital defects and suscepti-
bility to cancer. Of the 13 genes genetically associated
with FA, seven encode members of a core FA protein
complex [179,180]. This example and others show high
interconnectivity between proteins associated to a partic-
ular disease, which suggests that the disease phenotype
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may result from genetically induced perturbation of
protein interactions [59,166,178,181—183]. Similarly,
when a single gene is linked to multiple disorders, it often
seems to be because distinct mutations of this gene affect
specific individual interactions with different partners
[94,184]. It follows that looking for ‘disease interactions’
rather than for ‘disease genes’ should assist the delineation
of disease mechanisms and aid efforts to rationally inter-
rupt disease progression.

From an interactome network perspective the effects
of genetic variations are traditionally modeled as
complete loss of gene products (‘node removal’). While
such interpretations are generally suitable for nonsense
or frameshift mutations occurring early in the protein,
large insertions or deletions, or complete gene knock-
outs, the node removal model may not readily apply to
truncations that preserve specific autonomous protein
domains, or to single amino acid substitutions. Such
genetic variations could instead lead to perturbations of
specific interactions (‘edge removal’), or ‘edgetic
perturbations’ [184,185].

The systematic isolation of genetic variants associated
with edgetic perturbations, or edgetic alleles, and their
characterization in vivo, represent a promising strategy for
investigating the function of specific interactions, partic-
ularly with regard to human disease [185]. Two comple-
mentary strategies, ‘forward and reverse edgetics’,
reminiscent of the time-tested dichotomy of forward and
reverse genetics [186], allow systematic investigation of
the phenotypic outcomes of perturbations of specific
binary protein interactions [187]. Taking a set of muta-
tions in a gene associated with particular phenotypes,
such as disease-associated mutations, the forward edget-
ics approach uses Y2H to determine the interaction
defects of proteins where the mutations have been intro-
duced by site-directed mutagenesis [184]. Reciprocally,
reverse edgetics starts from a set of interactions for
a protein of interest, and aims to systematically isolate
alleles encoding proteins with desired specific interaction
defects by reverse Y2H selections [44,68,188]. The
edgetic alleles that are thus selected can be reintroduced
in vivo into a model organism to investigate the pheno-
typic consequences of specifically altering the corre-
sponding molecular interaction(s) [185].

Besides individual edges, higher-level topological
structures such as network motifs can also be associated
to specific biological functions [135,136]. Different types
of networks exhibit distinctive profiles of the relative
abundance of network motifs, so network motif profiles
can be used to characterize and compare networks.
Neuron networks or regulatory networks are enriched
in feedforward loops, whereas food webs are enriched
in bi-parallel motifs [135,136,189]. These distinctive
enrichments suggest that interactions that are part of
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feedforward loops are likely to be involved in information
processing, while interactions that are part of bi-parallel
motifs are likely to be involved in energy transfer. We
anticipate that analytical tools utilizing network motifs,
particularly multicolor network motifs, will help in
deciphering the function of many interactome network
edges and local structures.

Multicolor triangle motifs containing two nodes linked
by protein interactions with both of these nodes connected
to a third node by a genetic interaction appear enriched in
the S. cerevisiae interactome [24]. Consequently, if A, B
and C are three genes such that the translation products of A
and B physically interact, and the A and C genes are linked
by a genetic interaction, then a genetic interaction between
B and C can be predicted [131]. This particular motif
suggests a ‘compensatory complex’ theme wherein two
proteins/complexes/processes function in parallel. An
excellent example of compensatory complexes is the pair-
ing of endoplasmic reticulum (ER) protein-translocation
sub-complex [190] and the Gim complex [191], with each
complex connected to the other by multiple genetic inter-
actions [24,150]. The Gim complex facilitates the folding
of actin and tubulin components of the cytoskeleton. The
genetic interactions between the Gim complex and ER
protein translocation suggests that defects in moving
proteins into the ER are ameliorated by a fully functioning
cytoskeleton, whereas the trafficking of protein via lipid
vesicles requires the cytoskeleton to act as a ‘molecular
train track’.

TOWARDS DYNAMIC INTERACTOMES

Towards Cell-Type and Condition-Specific
Interactomes

The cell interior is a constantly changing environment.
Biomolecules and cellular processes respond dynamically
to intra- and extracellular cues. Available protein—protein
interactome maps are, regrettably, mostly static, repre-
senting the union of protein interactions that may occur in
all locations, times and environments. Analysis of pro-
tein—protein interactome networks will continue to
contribute profound insights to systems biology only by
reaching the temporal and spatial resolution necessary to
dynamically model coordination of biological processes
across the cell and the organism.

For a protein complex to be active at the right time and
place in the cell, and at a controlled concentration, the cell
has to undertake a large number of parallel and successive
decisions. For each complex subunit, the cognate gene
needs to be transcribed (chromatin opening, initiation and
elongation of transcription ...) and the mRNA processed,
exported, and translated. Complex subunits often also need
to be post-translationally modified, controlled in quality

55

and quantity by chaperones, and actively targeted to the
required site of action. There, protein complex assembly
can require a specific order of addition to reach stability.
Because each step leading to a protein complex is poten-
tially subject to regulation, co-complex interactome
networks are dense with accumulated information on the
cell dynamics.

Interrogating the dynamics of complex assembly at
proteome scale is not yet feasible experimentally. It is,
however, becoming possible to compare proteome expres-
sion across cell types, thanks to technological innovations
developed throughout the last decade, such as stable
isotope labeling by amino acids in cell culture [192] (see
Chapter 1). We can now interrogate interactome networks
for node dynamics (at least partially), but not yet for edge
dynamics. The first dynamic measures of protein complex
membership successfully followed a single protein, GRB2,
as it dynamically associated with multiple complexes
[193]. Pending increases in throughput and further
advances, the modeling of co-complex interactome
network dynamics will need to rely on computational
analyses. Empirical measurements of binary interaction
dynamics are also lacking. The LUMIER technology has
paved the way [194], but most binary interactome maps
remain static, and attempts at dynamical modeling also rely
on computational analyses.

Computational integration of interactome maps and
expression profiles can identify biological conditions
whereby two proteins that can interact, according to an
interactome map, are also co-present, according to their
expression profiles. This additional knowledge allows the
inference of spatiotemporal ‘interaction territories’
marking where or when the interaction can take place,
e.g., during cell cycle or organism development [52,122].
To what extent is the expression of interacting proteins
transcriptionally coordinated in cellular systems? Physi-
cally interacting proteins are more likely to exhibit similar
expression patterns than would be expected by chance
[39,129,195]. Most interacting proteins are not co-
expressed, however, and some pairs are even anti-
correlated in expression. Interactome dynamics therefore
appear to be under tight transcriptional control, with most
protein interactions being transient.

Transient protein interactions involved in signaling
and intercomplex connections are enriched in binary
interactome maps compared to co-complex interactome
maps [39]. Members of a given protein complex can be
co-regulated by a common transcription factor, when
a transcription factor is connected by transcription regu-
latory edges directed towards several interacting and
co-expressed proteins, forming ‘regulonic complexes’
[24,196,197]. In response to extracellular perturbations,
protein complexes generally remain stable, but the
functional connections between these complexes are
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substantially reorganized, as reflected by genetic interac-
tion changes [151,198,199].

By overlaying transcriptome patterns with a binary
interaction network, Han and colleagues discovered two
types of highly connected hub protein. On the one hand,
‘party’ hubs are strongly co-expressed with most of their
interacting partners; on the other hand, ‘date’ hubs connect
to different partners at different times or contexts [200].
These interactome dynamics differences are reflected in the
structures of hub proteins from the two groups. Relative to
date hubs, where different interacting partners may utilize
the same surface of interaction at different times, party hubs
tend to contain less disordered regions and to display more
interaction interfaces at their surface, as would be expected
for proteins with many simultaneous interacting partners
[201—203]. The observation that date hubs are more
strongly associated with breast cancer phenotypes was used
to develop a co-expression signature that strongly differ-
entiated breast cancer patients on the basis of disease
outcome [204].

Despite these initial successes, interactome dynamics
modeling will need to move beyond computational anal-
yses. Cell-type-specific transcriptome data may provide
intuitive approximation of protein expression levels, but
such estimations are bound to be imprecise. Detection of
a transcript does not necessarily imply that the corre-
sponding protein is present and stable, and the absence of
a transcript does not necessarily imply absence of the
corresponding protein, as proteins can remain stable long
past transcript degradation and can transit from cell to cell.
Relative protein concentrations must also be considered
when modeling interactome dynamics. Protein concentra-
tions influence the affinity of proteins for one another due
to mass action, and the effect of cell crowding on pro-
tein—protein interactomes remains unexplored. The intra-
cellular environment also affects protein interactions.
Proteins can be restricted to particular organelles bound by
membranes, as are the nuclei or mitochondria, or localized
in less sharply delimited regions such as nucleoli. Cellular
localization data are available at genomic scale for several
organisms [205,206], but information about the dynamic
movements of proteins across cellular compartments is
lacking.

These caveats limit the scope of computational
approaches in modeling interactome dynamics. Experi-
mentally measuring protein—protein interactomes at high
resolution both in space, across subcellular locations and
across cell and tissue types, and in time, for example
through the course of development, may still appear
a distant goal, but this goal deserves to be actively pursued.
Conversely, evidence that the expression of interacting
proteins is tightly regulated shows that co-expression
should not be used as a benchmark for protein interaction
reliability.
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Evolutionary Dynamics of Protein—Protein
Interactome Networks

A central hypothesis of systems biology is that genoty-
pe—phenotype relationships are mediated through physical
and functional interactions between genes and gene prod-
ucts that form intricate molecular networks within cells.
Genotype—phenotype relationships are also governed by
natural selection. Hence, understanding the principles
driving the evolution of molecular networks would
contribute to a deeper understanding of Life. Is there a ‘core
interactome’ shared by every form of Life? Do the
constraints of natural selection enforce constraints on
interactome network structure? Do interactomes grow over
evolutionary time? Does interactome complexity scale with
organism complexity? Are interactomes more stable or
more variable than genomes? Given these fundamental
questions [207], it is not surprising that the evolutionary
dynamics of protein—protein interactome networks have
been a focus of investigation ever since the first large-scale
protein—protein interactome maps appeared.

If protein—protein interactomes were evolutionarily
stable systems, interactions between orthologous protein
pairs from distinct species should be largely conserved.
However, the observed fraction of interactions correspond-
ing to such ‘interolog’ pairs is consistently low across several
species [53,208—211]. The incompleteness of available
interactome maps, and/or the difficulties of orthology
mapping, may explain these apparently low proportions of
conserved interactions. Still, as even these low proportions
would not be expected at random, they are consistent with
natural selection acting on the conservation of at least
a subset of interactions throughout evolutionary time. A
complementary interpretation would be that protein—
protein interactomes are evolutionarily dynamic systems,
constantly changing under the action of natural selection.

Cross-species comparisons indicate that ~107> inter-
actions are lost or gained per protein pair per million years,
leaving aside the interactome remodeling that necessarily
follows gene death and gene birth events [25,212,213]. This
corresponds to approximately 10% interaction changes per
10° years in the evolution of the human lineage. Different
types of protein interaction are rewired at different rates.
Transient interactions appear more evolutionarily volatile
than the more lasting interactions forming protein
complexes [213—215], and protein—peptide interactions
appear to change more rapidly than interactions between
long proteins [212]. Evolutionary variation is observed
even for protein complexes participating in the cell cycle.
These complexes are globally conserved across several
yeast species, but differ in their regulatory subunit
composition and timing of assembly [216]. Incidentally,
this dynamic rewiring of interactome networks during
evolution is bound to limit the reliability of predictions of
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protein interactions based on sequence similarity measures
across species [217].

Single amino acid changes can result in edgetic
perturbations of protein—protein interactome networks
[184]. Fixation of such sequence changes under selective
constraints is expected to shape protein interaction inter-
faces. In agreement, the sequences of hub proteins appear
under tighter constraints than the sequences of non-hub
proteins, with intra-module hubs significantly more con-
strained than inter-module hubs [202,218,219]. The yeast
protein Pbs2, which endogenously interacts specifically
with a single yeast SH3 domain, is able to promiscuously
interact with many non-yeast SH3 domains [220]. At an
equivalent level of sequence similarity, protein interactions
are more conserved within species, when considering
paralogous protein pairs originating from duplication
events, than across species when considering orthologous
protein pairs [217]. It seems that tinkering with interaction
interfaces and specificity causes protein interactions to co-
evolve dynamically within biological systems.

Immediately following gene duplication events, paralo-
gous proteins are expected to have identical protein
sequences and to share all of their interactors. Empirical
observations have revealed that the fraction of interactors
shared by paralogous proteins decreases over evolutionary
time, likely reflecting the well-described functional diver-
gence of retained paralogous proteins [221]. Such evolu-
tionary dynamics may explain the origin of the scale-free
degree distribution that protein—protein interactome
networks invariably follow, via an evolutionary version of
the ‘rich-get-richer’ principle [222,223] (see Chapter 9).
These evolutionary dynamics may also lead to an elevated
clustering in protein—protein interactome networks if self-
interactions are taken into account, as their duplication
enables the formation of novel complexes of paralogous
proteins [224,225] (see Chapter 9). The proteasome complex
likely evolved from an ancestral homodimeric interaction
through multiple successive duplication events [25,226].

Attempts to estimate the interactome rewiring rate
following duplication events have yielded conflicting
results [212,213,221—223,227—230]. These contradictions
may be reconciled by a model according to which rewiring
does not occur at a constant rate, but rather in a rapid-then-
slow fashion [55]. Similar rapid-then-slow dynamics
characterize protein sequence divergence following dupli-
cation events, likely reflecting relaxed-then-tight selective
constraints on the function of the duplicated proteins.
Signatures of neo-functionalization, sub-functionalization
and asymmetric edge-specific divergence have been
observed in protein—protein interactome networks
[219,231—233]. Edgetic rewiring of protein— protein
interactome networks following duplication events thus
appears associated with the Darwinian selection of the
functions of the corresponding proteins.
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How to reconcile the dynamic rewiring of protein—pro-
tein interactome networks with the existence of universal
processes found within all forms of Life? Beyond the union
of individual interactions, interactome networks exhibit
higher-level organizational properties, such as signaling
pathways, or other types of functional module. Several
pathways and modules appear evolutionarily conserved, as
measured by orthology-based network alignment algorithms
[234,235]. Similarly, topology-based network alignment
algorithms have revealed considerable similarities in the
local wiring of cellular networks across evolutionarily
distant organisms [236]. The global network topology of
binary interactomes of organisms as diverse as humans,
plants, worms and yeasts appear qualitatively similar, char-
acterized by a scale-free distribution of degrees and small-
world structures [55] (see Chapter 9). Likewise, the esti-
mated ratio of interacting pairs among all possible protein
pairs in these organisms, with genomes encoding anywhere
from 6000 to 30 000 proteins, appears surprisingly stable,
with 5—10 interactions per 10 000 protein pairs [55]. It is
possible that these high-level systems properties are ulti-
mately the object of evolutionary conservation and so unify
all forms of Life.

In summary, natural selection seems to shape the
dynamic evolution of protein—protein interactome
networks. Regulatory interactome networks seem to evolve
faster than protein—protein interactome networks
[213,228]. More refined models of the evolution of bio-
logical systems, including population size effects and the
concept of ‘genotype networks’, are being investigated
[237] (see chapter by A. Wagner). Life could be perceived
as a system containing genotypes and phenotypes, with
genotypes shaping phenotypes through the prism of inter-
actomes, and phenotypes shaping genotypes through the
feedback of evolution by natural selection.

CONCLUDING REMARKS

It is becoming increasingly clear that protein—protein
interactome mapping and modeling will be key to under-
standing cellular systems and genotype—phenotype
relationships. In this chapter we have described the state-
of-the-art experimental and computational strategies
currently used to detect and predict binary and co-complex
protein interactions at proteome scale, and outlined the
major achievements of the field so far. We covered the new
concepts that will need to emerge, and the new technologies
that will need to be developed, so that complete reference
protein—protein interactome maps can materialize for
several organisms in the near future. With such maps in
hand, the principles governing interactome dynamics will
be deciphered and causal paths between genotype and
phenotype will be drawn.
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An additional layer of complexity lies in the number of
protein isoforms resulting from alternative splicing of
transcripts for each individual gene. Protein—protein
interactome maps available so far have mostly disregarded
isoforms, opting for a gene-centered approach for
simplicity and because differentiating between protein
isoforms is technically challenging. Isoforms of the same
protein may exhibit distinct combinations of protein
interaction interfaces, leading to distinct local interactome
networks. It will therefore be crucial to differentiate iso-
forms in future interactome mapping and modeling. This
will undoubtedly shed light on protein interactome
dynamics, as isoform expression is expected to be highly
regulated across different cell types and conditions.

Mechanistic understanding of biological systems will
also require quantitative estimation of interaction
strength. To this end, systematic measures of the affinity
of proteins for each other, in binary as well as in higher-
order interactions, would generate a tremendous impetus
to mathematically model biological processes. It will also
be essential to achieve the systematic integration of
three-dimensional structural data, whether derived
experimentally or by computational modeling [238,239].
Eventually, three-dimensional mapping of the sequence
variations found in populations and their association with
traits may allow the almost seamless reconstruction of
genotype—phenotype relationships through edgetic
modeling of protein—protein interactomes.
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