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SUMMARY

Just as reference genome sequences revolutionized
human genetics, reference maps of interactome
networks will be critical to fully understand geno-
type-phenotype relationships. Here, we describe a
systematic map of �14,000 high-quality human bi-
nary protein-protein interactions. At equal quality,
this map is �30% larger than what is available from
small-scale studies published in the literature in the
last few decades. While currently available informa-
tion is highly biased and only covers a relatively small
portion of the proteome, our systematicmap appears
strikingly more homogeneous, revealing a ‘‘broader’’
human interactome network than currently appre-
ciated. The map also uncovers significant inter-
connectivity between known and candidate cancer
1212 Cell 159, 1212–1226, November 20, 2014 ª2014 Elsevier Inc.
gene products, providing unbiased evidence for an
expanded functional cancer landscape,while demon-
strating how high-quality interactome models will
help ‘‘connect the dots’’ of the genomic revolution.

INTRODUCTION

Since the release of a high-quality human genome sequence a

decade ago (International Human Genome Sequencing Con-

sortium, 2004), our ability to assign genotypes to phenotypes

has exploded.Genes havebeen identified formostMendelian dis-

orders (Hamosh et al., 2005) and over 100,000 alleles have been

implicated in at least one disorder (Stenson et al., 2014). Hundreds

of susceptibility loci have been uncovered for numerous complex

traits (Hindorff et al., 2009) and the genomesof a few thousandhu-

man tumors have been nearly fully sequenced (Chin et al., 2011).

This genomic revolution is poised to generate a complete descrip-

tion of all relevant genotypic variations in the human population.

mailto:fritz.roth@utoronto.ca
mailto:marc_vidal@dfci.harvard.edu
http://dx.doi.org/10.1016/j.cell.2014.10.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2014.10.050&domain=pdf


Genomic sequencing will, however, if performed in isolation,

leave fundamental questions pertaining to genotype-phenotype

relationships unresolved (Vidal et al., 2011). The causal changes

that connect genotype to phenotype remain generally unknown,

especially for complex trait loci and cancer-associated mu-

tations. Evenwhen identified, it is often unclear how a causal mu-

tation perturbs the function of the corresponding gene or gene

product. To ‘‘connect the dots’’ of the genomic revolution, func-

tions and context must be assigned to large numbers of geno-

typic changes.

Complex cellular systems formed by interactions among genes

and gene products, or interactome networks, appear to underlie

most cellular functions (Vidal et al., 2011). Thus, a full understand-

ing of genotype-phenotype relationships in human will require

mechanistic descriptions of how interactome networks are per-

turbed as a result of inherited and somatic disease susceptibil-

ities. This, in turn, will require high-quality and extensive genome

and proteome-scale maps of macromolecular interactions such

as protein-protein interactions (PPIs), protein-nucleic acid inter-

actions, and posttranslational modifiers and their targets.

First-generation human binary PPI interactome maps (Rual

et al., 2005; Stelzl et al., 2005) have already provided network-

based explanations for some genotype-phenotype relation-

ships, but they remain incomplete and of insufficient quality to

derive accurate global interpretations (Figure S1A available on-

line). There is a dire need for empirically-controlled (Venkatesan

et al., 2009) high-quality proteome-scale interactome reference

maps, reminiscent of the high-quality reference genome

sequence that revolutionized human genetics.

The challenges are manifold. Even considering only one splice

variant per gene, approximately 20,000 protein-coding genes

(Kim et al., 2014; Wilhelm et al., 2014) must be handled and

�200million protein pairs tested to generate a comprehensive bi-

nary reference PPI map. Whether such a comprehensive network

could ever be mapped by the collective efforts of small-scale

studies remains uncertain. Computational predictions of protein

interactions can generate information at proteome scale (Zhang

et al., 2012) but are inherently limited by biases in currently avail-

able knowledge used to infer such interactomemodels. Should in-

teractomemaps be generated for all individual human tissues us-

ing biochemical cocomplex association data, or would ‘‘context-

free’’ information on direct binary biophysical interaction for all

possible PPIs be preferable? To what extent would these ap-

proaches be complementary? Even with nearly complete, high-

quality reference interactome maps of biophysical interactions,

how can the biological relevance of each interaction be evaluated

under physiological conditions? Here, we begin to address these

questions by generating a proteome-scale map of the human bi-

nary interactome and comparing it to alternative network maps.

RESULTS

Vast Uncharted Interactome Zone in Literature
To investigate whether small-scale studies described in the liter-

ature are adequate to qualitatively and comprehensively map the

human binary PPI network, we assembled all binary pairs identi-

fied in such studies and available as of 2013 from seven public

databases (Figure S1B, see Extended Experimental Procedures,
C

Section 1). Out of the 33,000 literature binary pairs extracted, two

thirds were reported in only a single publication and detected by

only a single method (Lit-BS pairs), thus potentially presenting

higher rates of curation errors than binary pairs supported bymul-

tiple pieces of evidence (Lit-BMpairs; Tables S1A, S1B, andS1C)

(Cusick et al., 2009). Testing representative samples from both of

these sets using the mammalian protein-protein interaction trap

(MAPPIT) (Eyckerman et al., 2001) and yeast two-hybrid (Y2H)

(Dreze et al., 2010) assays, we observed that Lit-BS pairs were

recovered at rates that were only slightly higher than the ran-

domly selected protein pairs used as negative control (random

reference set; RRS) and significantly lower than Lit-BMpairs (Fig-

ure 1A and Table S2A; see Extended Experimental Procedures,

Section 2). Lit-BS pairs co-occurred in the literature significantly

less often than Lit-BM pairs as indicated by STRING literature

mining scores (Figure 1A and Figure S1C; see Extended Experi-

mental Procedures, Section 2) (von Mering et al., 2003), suggest-

ing that these pairs were less thoroughly studied. Therefore, use

of binary PPI information from public databases should be

restricted to interactions with multiple pieces of evidence in the

literature. In 2013, this corresponded to 11,045 high-quality pro-

tein pairs (Lit-BM-13), more than an order of magnitude below

current estimates of the number of PPIs in the full human interac-

tome (Stumpf et al., 2008; Venkatesan et al., 2009).

The relatively low number of high-quality binary literature PPIs

may reflect inspection biases inherent to small-scale studies.

Some genes such as RB1 are described in hundreds of publi-

cations while most have been mentioned only in a few (e.g.,

the unannotated C11orf21 gene). To investigate the effect of

such biases on the current coverage of the human interactome

network, we organized the interactome search space by ranking

proteins according to the number of publications in which they

are mentioned (Figure 1B). Interactions between highly studied

proteins formed a striking ‘‘dense zone’’ in contrast to a large

sparsely populated zone, or ‘‘sparse zone,’’ involving poorly

studied proteins. Candidate gene products identified in

genome-wide association studies (GWAS) or associated with

Mendelian disorders distribute homogeneously across the pub-

lication-ranked interactome space (Figure 1B and Figure S1D),

demonstrating a need for unbiased systematic PPI mapping to

cover this uncharted territory.

A Proteome-wide Binary Interactome Map
Based on literature-curated information, the human interactome

appears to be restricted to a narrow dense zone, suggesting that

half of the human proteome participates only rarely in the inter-

actome network. Alternatively, the zone that appears sparse in

the literature could actually be homogeneously populated by

PPIs that have been overlooked due to sociological or experi-

mental biases.

To distinguish between these possibilities and address other

fundamental questions outlined above, we generated a new pro-

teome-scale binary interaction map. By acting on all four param-

eters of our empirically-controlled framework (Venkatesan et al.,

2009), we increased the coverage of the human binary interac-

tome with respect to our previous human interactome data set

obtained by investigating a search space defined by�7,000 pro-

tein-coding genes (‘‘Space I’’) and published in 2005 (HI-I-05)
ell 159, 1212–1226, November 20, 2014 ª2014 Elsevier Inc. 1213
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Figure 1. Vast Uncharted Interactome Zone in Literature and Generation of a Systematic Binary Data Set

(A) Validation of binary literature pairs extracted from public databases (Bader et al., 2003; Berman et al., 2000; Chatr-Aryamontri et al., 2013; Kerrien et al., 2012;

Licata et al., 2012; Keshava Prasad et al., 2009; Salwinski et al., 2004). Fraction of pairs recovered byMAPPIT at increasing RRS recovery rates (top left) and at 1%

RRS recovery rate (bottom left), found to co-occur in the literature as reported in the STRING database (upper right), and recovered by Y2H (lower right). Shading

and error bars indicate standard error of the proportion. p values, two-sided Fisher’s exact tests. For n values, see Table S6.

(B) Adjacency matrix showing Lit-BM-13 interactions, with proteins in bins of �350 and ordered by number of publications along both axes. Upper and right

histograms show the median number of publications per bin. The color intensity of each square reflects the total number of interactions between proteins for the

corresponding bins. Total number of interactions per bin (lower histogram). Number of products from GWAS loci (Hindorff et al., 2009), Mendelian disease

(Hamosh et al., 2005), and Sanger Cancer Gene Census (Cancer Census) (Futreal et al., 2004) genes per bin (circles).

(legend continued on next page)
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(Rual et al., 2005) (Figures 1C and 1D; see Extended Experi-

mental Procedures, Section 3). A search space consisting of all

pairwise combinations of proteins encoded by �13,000 genes

(‘‘Space II’’; Table S2B) was systematically probed, representing

a 3.1-fold increase with respect to the HI-I-05 search space. To

gain in sensitivity, we performed the Y2H assay in different strain

backgrounds that showed increased detection of pairs of a pos-

itive reference set (PRS) composed of high-quality pairs from the

literature without increasing the detection rate of RRS pairs. To

increase our sampling, the entire search space was screened

twice independently. Pairs identified in this first pass were sub-

sequently tested pairwise in quadruplicate starting from fresh

yeast colonies. To ensure reproducibility, only pairs testing pos-

itive at least three times out of the four attempts and with

confirmed identity were considered interacting pairs, resulting

in �14,000 distinct interacting protein pairs.

We validated these binary interactions using three binary pro-

tein interaction assays that rely on different sets of conditions

than the Y2Hassay: (1) reconstituting amembrane-bound recep-

tor complex in mammalian cells using MAPPIT, (2) in vitro using

the well-based nucleic acid programmable protein array

(wNAPPA) assay (Braun et al., 2009; Ramachandran et al.,

2008), and (3) reconstituting a fluorescent protein in Chinese

hamster ovary cells using a protein-fragment complementation

assay (PCA) (Nyfeler et al., 2005) (see Extended Experimental

Procedures, Section 4). The Y2H pairs exhibited validation rates

that were statistically indistinguishable from a PRS of �500 Lit-

BM interactions while significantly different from an RRS of

�700pairswith all threeorthogonal assays andover a large range

of score thresholds (Figure 1D, Tables S2A and S2C), demon-

strating the quality of the entire data set. Using three-dimensional

cocrystal structures available for protein complexes in theProtein

Data Bank (Berman et al., 2000) and for domain-domain interac-

tions (Stein et al., 2011) (FigureS2 andTablesS2D, S2E, andS2F;

see Extended Experimental Procedures, Sections 5 and 6), we

also demonstrated that our binary interactions reflect direct bio-

physical contacts, a conclusion in stark contrast to a previous

report suggesting that Y2H interactions are inconsistent with

structural data (Edwards et al., 2002). Our results also suggested

that Y2Hsensitivity correlateswith the number of residue-residue

contacts and thus presumably with interaction affinity. The

corresponding human interactome data set covering Space II

and reported in 2014 (HI-II-14; Table S2G) is the largest experi-

mentally-determined binary interaction map yet reported, with

13,944 interactions among 4,303 distinct proteins.

Overall Biological Significance
To assess the overall functional relevance of HI-II-14, we

combined computational analyses with a large-scale experi-
(C) Improvements from first-generation to second-generation interactome map

Completeness: fraction of all pairwise protein combinations tested; Assay sen

given assay; Sampling sensitivity: fraction of identifiable interactions that are d

positives. PRS: positive reference set; RRS: random reference set.

(D) Experimental pipeline for identifying high-quality binary protein-protein interac

(right) recovered by MAPPIT, PCA, and wNAPPA at increasing assay stringency. S

comparing PRS and HI-II-14 at 1% RRS, two-sided Fisher’s exact tests. For n v

See also Figures S1 and S2 and Tables S1 and S2.

C

mental approach. We first measured enrichment for shared

Gene Ontology (GO) terms and phenotypic annotations and

observed that HI-II-14 shows significant enrichments that are

similar to those of Lit-BM-13 (Figures 2A and 2B; see Extended

Experimental Procedures, Section 7). Second, we measured

how much binary interactions from HI-II-14 reflect membership

in larger protein complexes as annotated in CORUM (Ruepp

et al., 2010) or reported in a cocomplex association map

(Woodsmith and Stelzl, 2014). In both cases, we observed a

significant enrichment for binary interactions between protein

pairs that belong to a common complex (p < 0.001; Figure 2B).

Third, we performed a similar analysis using tissue-specific

mRNA expression data across the 16 human tissues of the Illu-

mina Human Body Map 2.0 project as well as cellular compart-

ment localization annotations from the GO Slim terms. Again,

HI-II-14 was enriched for interactions mediated by protein pairs

present in at least one common compartment or cell type (Fig-

ures 2C and 2D). Finally, we measured the overlap of HI-II-14

with specific biochemical relationships, as represented by

kinase-substrate interactions. Both HI-II-14 and Lit-BM-13

contained significantly more PPIs reflecting known kinase-

substrate relationships (Hornbeck et al., 2012) than the corre-

sponding degree-controlled randomized networks (Figure 2E).

In addition, HI-II-14 tended to connect tyrosine and serine/

threonine kinases (Manning et al., 2002) to proteins with tyro-

sine or serine/threonine phospho-sites (Hornbeck et al., 2012;

Olsen et al., 2010), respectively (Figure S3A), pointing to

the corresponding interactions being genuine kinase-sub-

strate interactions. In short, our systematic interactome map,

which was generated independently from any pre-existing

biological information, reveals functional relationships at

levels comparable to those seen for the literature-based

interaction map.

To further investigate the overall biological relevance of HI-II-

14, we used an experimental approach that compares the

impact of mutations associated with human disorders to that

of common variants with no reported phenotypic consequences

on biophysical interactions (Figure 3). Our rationale is that a set of

interactions corresponding to genuine functional relationships

should more likely be perturbed by disease-associated mu-

tations than by common variants. The following example will

illustrate this concept. Mutations R24C and R24H in CDK4 are

clearly associated with melanoma by conferring resistance to

CDKN2A inhibition (Wölfel et al., 1995), whereas N41S and

S52N mutations are of less clear clinical significance (Zhong

et al., 2009) and have remained functionally uncharacterized.

HI-II-14 contains five CDK4 interactors: two inhibitors (CDKN2C

and CDKN2D), two cyclins (CCND1 and CCND3), and HOOK1, a

novel interacting partner and a potential phosphorylation target
ping based on an empirically-controlled framework (Venkatesan et al., 2009).

sitivity: fraction of all true biophysical interactions that are identifiable by a

etected in the experiment; Precision: fraction of reported pairs that are true

tions (left). ORF: open reading frame. Fraction of HI-II-14, PRS, and RRS pairs

hading indicates standard error of the proportion. p > 0.05 for all assays when

alues, see Table S6.
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Figure 2. Overall Biological Significance

(A) Schematic of the method to assess biological

relevance of binary maps.

(B) Enrichment of binary interactome maps for

functional relationships (left) and cocomplex

memberships (right). Error bars indicate 95%

confidence intervals. BP: Biological process; MF:

Molecular function; CC: Cellular component.

Mouse phenotypes: Shared phenotypes in mouse

models by orthology mapping. MS: Mass-spec-

trometry-basedmap. Enrichments: p% 0.05 for all

annotations and maps, two-sided Fisher’s exact

tests. For n values, see Table S6.

(C) and (D) Fraction of binary interactions between

proteins localized in a common cellular compart-

ment and proteins copresent in at least one cell

type (arrows) compared to those in 1,000 degree-

controlled randomized networks. Empirical p

values. For n values, see Table S6.

(E) Number of known kinase-substrate interactions

found in binary maps (arrows) compared to those

in 1,000 randomized networks. Empirical p values

are shown.

See also Figure S3.
of CDK4 (Figure S3B). In agreement with previous reports, the

comparative interaction profile shows that R24C and R24H,

but not N41S and S52N, specifically perturb CDK4 binding to

CDKN2C (Figure 3).

In total, we identified 32 human genes for which: (1) the cor-

responding gene product is reported to have binary interactors

in HI-II-14, (2) germline disease-associated missense mutations

have been reported, and (3) common coding missense variants

unlikely to be involved in any disease have been identified in the

1000 Genomes Project (1000 Genomes Project Consortium,

2012). To avoid overrepresentation of certain genes, we sele-

cted a total of 115 variants, testing up to four disease and

four common variants per disease gene for their impact on

the ability of the corresponding proteins to interact with known

interaction partners (see Extended Experimental Procedures,

Section 8). Disease variants were 10-fold more likely to perturb

interactions than nondisease variants (Figure 3 and Table S3).

Strikingly, more than 55% of the 107 HI-II-14 interactions tested

were perturbed by at least one disease-associated variant, and

the same trend was observed when considering only mutants

with evidence of expression in yeast as indicated by their ability

to mediate at least one interaction (Figure S3C). Examples of

novel specifically perturbed interactions include AANAT-
1216 Cell 159, 1212–1226, November 20, 2014 ª2014 Elsevier Inc.
BHLHE40 and RAD51D-IKZF1 (Figure 3).

In the first case, the A129T mutation in

AANAT is known to be associated with

a delayed sleeping phase syndrome

and specifically perturbs an interaction

between AANAT and BHLHE40, the

product of a gene reported to function

in circadian rhythm regulation (Naka-

shima et al., 2008). In the second case,

the breast-cancer-associated RAD51D

E233G mutation perturbs interactions
with a number of partners, including the known cancer gene

product IKZF1 (Futreal et al., 2004).

Altogether these computational and experimental results pro-

vide strong evidence that HI-II-14 pairs correspond to biologi-

cally relevant interactions and represent a valuable resource to

further our understanding of the human interactome and its per-

turbations in human disease.

A ‘‘Broader’’ Interactome
Unlike literature-curated interactions, HI-II-14 protein pairs are

distributed homogeneously across the interactome space (Fig-

ure 4A), indicating that sociological biases, and not fundamental

biological properties, underlie the existence of a densely popu-

lated zone in the literature. Since 1994, the number of high-qual-

ity binary literature PPIs has grown roughly linearly to reach

�11,000 interactions in 2013 (Figure 4B), while systematic data

sets are punctuated by a few large-scale releases. Although

the sparse territory of the literature map gradually gets popu-

lated, interaction density in this zone continues to lag behind

that of the dense zone (Figure 4B). In terms of proteome

coverage, the expansion rate is faster for systematic maps

than for literature maps, especially in the sparse territory (Fig-

ure 4C and Figure S4A; see Extended Experimental Procedures,
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See also Figure S3 and Table S3.
Section 9). While Lit-BM-13 provides more information in the

dense zone, HI-II-14 reveals interactions for more than 2,000

proteins absent from Lit-BM-13. These observations are likely

due to a tendency of the literature map to expand from already

connected proteins (Figure 4D).
C

To more deeply explore the heterogeneous coverage of the

human interactome, we compared HI-II-14 and Lit-BM-13 to a

collection of �25,000 predicted binary PPIs of high-confidence

(PrePPI-HC) (Zhang et al., 2012) and a co-fractionation map of

�14,000 potentially binary interactions (Co-Frac) (Havugimana
ell 159, 1212–1226, November 20, 2014 ª2014 Elsevier Inc. 1217
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Figure 4. A ‘‘Broader’’ Interactome

(A) Adjacency matrices showing Lit-BM-13 (blue) and HI-II-14 (purple) interactions, with proteins in bins of �350 and ordered by number of publications along

both axes. The color intensity of each square reflects the total number of interactions for the corresponding bins.

(B) Total number of binary interactions in literature and systematic interactomemaps over the past 20 years (top), with years reflecting either date of public release

of systematic binary data sets or date of publication that resulted in inclusion of interactions in Lit-BM-13. Adjacency matrices (bottom) as in Figure 4A.

(C) Fraction of the human proteome present in binary interactome maps at selected time points since 1994, considering the full interactome space (left) or only

dense (middle) and sparse (right) zones of Lit-BM-13 with respect to number of publications.

(D) Fraction of new interactions connecting two proteins that were both absent from the map at the previous time point (four years interval; middle) compared to

the average in 1,000 randomized networks (right). Error bars indicate standard deviation.
et al., 2012). We tested the extent to which these two data sets

contain binary interactions (see Extended Experimental Proce-

dures, Section 10). Representative samples from both Co-Frac

and PrePPI-HC were recovered by Y2H at a much lower rate

than a sample of Lit-BM-13 and appeared statistically indi-
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stinguishable from random pairs (Figure 5A and Table S4A). A

literature non-binary data set (Lit-NB-13) performed similarly.

However, Co-Frac and PrePPI-HC, like Lit-NB-13, were both

significantly enriched for functionally relevant relationships.

Thus, although these data sets represent potentially valuable



resources, both Co-Frac and PrePPI-HC appear to be more

comparable to nonbinary than to binary data sets. Surprisingly,

even though PrePPI-HC and Co-Frac systematically surveyed

the full human proteome and map different portions of the inter-

actome (Figures S4B), both exhibit a strong tendency to report

interactions among well-studied proteins (Figure 5B). This bias

is likely due to the integration of functional annotations in the

generation of both data sets.

Because coverage might depend on gene expression levels,

we also examined interactome maps for expression-related

sparse versus dense zones. Co-Frac shows a strong bias toward

interactions involving proteins encoded by genes highly ex-

pressed in the cell lines used (Figure 5B). This expression-depen-

dent bias is echoed in the literature map, perhaps reflecting a

general tendency to study highly expressed proteins. In contrast,

both HI-II-14 and PrePPI-HC exhibit a uniform interaction density

across the full spectrum of expression levels, likely explained by

the standardized expression of proteins tested in Y2H and by the

independence of homology-based predictions from expression

levels.

We more broadly explored the intrinsic biases that might influ-

ence the appearance of sparsely populated zones by examining

21 protein or gene properties, roughly classified as expression-,

sequence-, or knowledge-based (Figures 5B and 5C, Tables S4B

and S4C; see Extended Experimental Procedures, Section 9).

For example, PrePPI-HC is virtually devoid of interactions be-

tween proteins lacking Pfamdomains, consistent with conserved

domains forming the basis of the prediction method. HI-II-14

appears depleted of interactions among proteins containing pre-

dicted transmembrane helices, consistent with expected limita-

tions of the Y2H assay (Stagljar and Fields, 2002). Co-Frac is

similarly depleted in interactions involving proteins with trans-

membrane helices, which may result from membrane-bound

proteins being filtered out during biochemical fractionations.

Compared to HI-II-14, HI-I-05 presented a less homogenous

coverage of the space with respect to abundance and knowl-

edge properties, likely reflecting the content of early versions

of the hORFeome (Figure S4C). Importantly, no single map

appeared unbiased in all 21 examined properties. A combined

map presented a slightly increased homogeneity although

intrinsic knowledge biases of the three maps using literature-

derived evidence were still predominant.

To confirm that HI-II-14 interactions found in the sparse zones

of the three other maps are of as high quality as those found in

dense zones, we compared MAPPIT validation rates and func-

tional enrichment across these zones for all protein properties

examined. MAPPIT validation rates of dense and sparse zone

pairs were consistent for nearly all properties (Figures 5D and

S4D), indicating thatHI-II-14 interactions areof similar biophysical

quality throughout the full interactome space. Functional enrich-

ment within the sparse zone was statistically indistinguishable

from that of the dense zone (Figures 5D and S4E), demonstrating

the functional importance of HI-II-14 biophysical interactions in

zones covered sparsely by other types of interactome maps.

Considering all current maps, more than half of the proteome

is now known to participate in the interactome network. Our sys-

tematic exploration of previously uncharted territories dramati-

cally expands the interactome landscape, suggesting that the
C

human interactome network is broader in scope than previously

observed and that the entire proteome may be represented

within a fully mapped interactome.

Interactome Network and Cancer Landscape
Genes associated with the same disease are believed to be

preferentially interconnected in interactome networks (Barabási

et al., 2011; Vidal et al., 2011). However, in many cases, these

observations were made with interactome maps that are

composites of diverse evidence, e.g., binary PPIs, cocomplex

memberships, and functional associations, a situation further

complicated by the uneven quality and sociological biases

described above. Using HI-II-14, we revisited this concept for

cancer gene products. Our goal was to investigate whether the

cancer genomic landscape is limited to the known cancer genes

curated in the Sanger Cancer Gene Census (‘‘Cancer Census’’)

(Futreal et al., 2004), or if, alternatively, it might extend to some

of the hundreds of additional candidate genes enriched in so-

matic mutations uncovered by systematic cancer genome

sequencing (‘‘SM genes’’) (Chin et al., 2011) and/or identified

by functional genomic strategies such as Sleeping Beauty trans-

poson-based screens in mice (‘‘SB genes’’) (Copeland and Jen-

kins, 2010) or global investigations on DNA tumor virus targets

(‘‘VT genes’’) (Rozenblatt-Rosen et al., 2012).

Given our homogeneous coverage of the space for known

(Cancer Census) and candidate (SB, SM, and VT) cancer genes

(Figure 6A), we first tested the postulated central role of cancer

gene products in biological networks (Barabási et al., 2011) and

verified that both sets tend to have more interactions and to be

more central in the systematic map than proteins not associ-

ated with cancer (Figure 6B). We then examined the intercon-

nectivity of known cancer proteins and showed that Cancer

Census gene products interact with each other more frequently

than expected by chance, a trend not apparent in HI-I-05 (Fig-

ure 6C). We sought to use this topological property as the basis

for novel cancer gene discovery in the large lists of cancer can-

didates from genomic and functional genomic screens.

We examined whether products of candidate cancer genes

identified by GWAS (Table S5A) tend to be connected to Cancer

Census proteins, and observed significant connectivity in all four

maps (Figure S5A; see Extended Experimental Procedures, Sec-

tion 11). When loci containing a known cancer gene were

excluded, only HI-II-14 showed such connectivity, supporting

its unique value to identify cancer candidate genes beyond those

already well demonstrated (Figures 7A and S5A). In further

support of their association with cancer, genes in cancer

GWAS loci prioritized by ‘‘guilt-by-association’’ in HI-II-14 tend

to correspond to cancer candidates from systematic cancer

studies (Figures 7B and 7C). These results suggest that can-

cer-associated proteins tend to form subnetworks perturbed in

tumorigenesis, and that HI-II-14 provides new context to priori-

tize cancer genes from genome-wide studies.

The following example illustrates the power of our combined

approach. C-terminal Binding Protein 2 (CTBP2) is encoded

at a locus associated with prostate cancer susceptibility

(Thomas et al., 2008) and belongs to both SB and VT gene lists

(Mann et al., 2012; Rozenblatt-Rosen et al., 2012). Two Cancer

Census genes, IKZF1 and FLI1, encode interacting partners of
ell 159, 1212–1226, November 20, 2014 ª2014 Elsevier Inc. 1219
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Figure 5. Comparison of Interaction Mapping Approaches

(A) Evaluation of the quality of Co-Frac (orange), PrePPI-HC (red), and pairs from small-scale experiments in the literature with no binary evidence (Lit-NB-13,

grey). Fraction of pairs recovered by Y2H as compared to pairs from Lit-BM-13 and pairs of randomly selected proteins (RRS) (left). Error bars indicate standard

error of the proportion. Enrichment in functional interactions and cocomplex memberships (right). Legend as in Figure 2B. For n values, see Table S6.

(B) Adjacency matrices for HI-II-14, Lit-BM-13, Co-Frac, and PrePPI-HC maps, with proteins per bins of �350 and ordered by number of publications, mRNA

abundance in HEK cells, fraction of protein sequence covered by Pfam domains, or fraction of protein sequence in transmembrane helices. Figure legend as in

Figure 1B.

(C) Highest interaction density imbalances (observed minus expected) in the four maps, the union of all four maps, and our previous binary map (HI-I-05) for 21

protein properties.

(legend continued on next page)
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CTBP2 in HI-II-14. These are transcription factors with tumor

suppressor (Payne and Dovat, 2011) and proto-oncogene (Korn-

blau et al., 2011) roles, respectively, in lymphoid tumors. Given

its interactions with IKZF1 and FLI1, we investigated the poten-

tial role of CTBP2 in lymphoid tumorigenesis. In the Cancer Cell

Line Encyclopedia (Barretina et al., 2012), FLI1 was significantly

more often amplified in lymphoid than in other cell lines (Fig-

ure 7D), consistent with its proposed proto-oncogenic role in

these tumors. In contrast, both CTBP2 and IKZF1, but not

CTBP1, were deleted significantly more often in lymphoid cancer

cell lines. Notably, deletion of CTBP2 or IKZF1 and amplification

of FLI1 were mostly nonoverlapping in the different cell lines,

suggesting that either event may be sufficient to affect tumori-

genesis (Figure S5B). Altogether, these results suggest a role

for CTBP2 in suppressing lymphoid tumors by direct repression

of FLI1 function, potentially involving IKZF1.

Finally, we assessed how HI-II-14 interactions can be inte-

grated with genomic and functional genomic data sets. Going

beyond the ‘‘guilt-by-profiling’’ concept, we also used these

gene sets in ‘‘guilt-by-association’’ predictions in a combined

model (Figure S6A), which leads to substantially improved can-

cer gene rankings over those found using either predictive strat-

egy alone (Figures 7E, S6B, and S6C and Table S5B; see

Extended Experimental Procedures, Section 12). In contrast, a

similar analysis using HI-I-05 interactions showed that its limited

size prevented inclusion of any guilt-by-association terms

(Figure S6D). Genes significantly mutated in cancer patients

from recent TCGA pan-cancer mutation screens (Table S5C)

(Lawrence et al., 2014) were enriched among highly ranked pre-

dictions from the combined model (p = 63 10�3, one-sided Wil-

coxon rank test), supporting the validity of our integrated cancer

gene predictions. Our top-ranked prediction was the cyclin-

dependent kinase 4 (CDK4), a well-known cancer gene product.

Four other genes from the Cancer Census list appeared among

the top 25 ranked genes. Strikingly, STAT3, which ranked third,

was added to the Cancer Census after our training set was es-

tablished, highlighting the ability of this approach to identify

novel cancer gene products.

To characterize the biological processes in which the candi-

date cancer genes predicted by the combined model are likely

to be involved, we identified binary interactions linking them to

each other or to Cancer Census proteins in the 12 ‘‘pathways

of cancer’’ relevant to cancer development and progression

(Table S5D) (Vogelstein et al., 2013). Of our top 100 candidates,

60 mapped to at least one cancer pathway (Figures 7F and S7),

twice as many as would be expected from predictions using

either the guilt-by-profiling or guilt-by-association approach

alone.Wepropose thatmanynovel cancer candidates canbean-

notated to specific processes based on their interactions with

CancerCensus geneproducts andknownparticipation in cellular

pathways. For example, the candidate protein ID3, a DNA-bind-

ing inhibitor, interacts with the two Cancer Census transcription
(D) Precision at 1%RRS recovery in theMAPPIT assay (top, error bars indicate sta

Ontology and mouse phenotypes based annotations, error bars indicate 95% co

from Lit-BM-13, Co-Frac, and PrePPI-HC. p > 0.05 for all pairwise comparisons

Table S6.

See also Figure S4 and Table S4.

C

factors TCF12 and TCF3, suggesting a role for ID3 in the regula-

tion of transcription by inhibiting binding of specific transcription

factors to DNA (Loveys et al., 1996; Richter et al., 2012). CTBP2,

whichwe identified as apotential suppressor in lymphoid tumors,

represents another example (Figures 5E and S7).

In summary, the increased and uniform coverage of HI-II-14

demonstrates that known and candidate cancer gene products

are highly connected in the interactome network, which in turn

provides unbiased evidence for an expanded functional cancer

landscape.
DISCUSSION

By systematically screening half of the interactome space with

minimal inspection bias, we more than doubled the number of

high-quality binary PPIs available from the literature. Covering

zones of the human interactome landscape that have been

weakly charted by other approaches, our systematic binary

map provides deeper functional context to thousands of pro-

teins, as demonstrated for candidates identified in unbiased

cancer genomic screens. Systematic binary mapping therefore

stands as a powerful approach to ‘‘connect the dots’’ of the

genomic revolution.

Combining high-quality binary pairs from the literature with

systematic binary maps, 30,000 high-confidence interactions

are now available. It is likely that a large proportion of the human

interactome can soon be mapped by taking advantage of the

emergence of reference proteome maps (Kim et al., 2014;

Wilhelm et al., 2014), a combination of nearly complete clone col-

lections (Yang et al., 2011), rapid improvements in Y2H assay

sensitivity, and emerging interaction-mapping technologies

that drastically reduce cost (Caufield et al., 2012; Stagljar and

Fields, 2002; Yu et al., 2011).

Reference binary interactome maps of increased coverage

and quality will be required to interpret condition-specific inter-

actions and to characterize the effects of splicing and genetic

variation on interactions (Zhong et al., 2009). While protein-pro-

tein interactions represent an important class of interactions be-

tweenmacromolecules, future efforts integrating this information

with protein-DNA, protein-RNA, RNA-RNA or protein-metabolite

interactions will provide a unified view of the molecular inter-

actions governing cell behavior. Just as a reference genome

enabled detailed maps of human genetic variation (1000 Ge-

nomes Project Consortium, 2012), completion of a reference

interactome network map will enable deeper insight into geno-

type-phenotype relationships in human.
EXPERIMENTAL PROCEDURES

Extraction of the Literature-Based Data Sets

Human PPIs annotated with tractable publication records were extracted from

seven databases through August 2013. Large-scale systematic data sets and
ndard error of the proportion) and functional enrichment (bottom, union of Gene

nfidence intervals) of HI-II-14 pairs found in dense and sparse zones mirrored

of dense and sparse zones, two-sided Fisher’s exact tests. For n values, see

ell 159, 1212–1226, November 20, 2014 ª2014 Elsevier Inc. 1221
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Figure 6. Network Properties of Cancer

Gene Products

(A) Adjacency matrices for Lit-BM-13 and HI-II-14

only showing interactions involving the product of

a Cancer Census (Futreal et al., 2004) or of a

candidate cancer gene. Figure legend as in Fig-

ure 1B. Lower histograms show for each bin, the

fraction of cancer candidates having at least one

interaction.

(B) Distribution of the number of interactions (de-

gree) and normalized number of shortest paths

between proteins (betweenness centrality) for

products of Cancer Census and of candidate

cancer genes in Lit-BM-13 and in HI-II-14 maps as

compared to other proteins (right; * for p < 0.05, NS

for p > 0.05, two-sided Wilcoxon rank sum tests).

For n values, see Table S6.

(C) Number of interactions between products of

Cancer Census genes (arrows) in HI-I-05, HI-II-14,

Lit-BM as of 2000 (Lit-BM-00) and as of 2013 (Lit-

BM-13), as compared to 1,000 degree-controlled

randomized networks. Empirical p values. For n

values, see Table S6.
pairs involving products of UBC, SUMO1, SUMO2, SUMO3, SUMO4, or

NEDD8, were excluded. The remaining pairs were divided into those having

no pieces of binary evidence (Lit-NB) and those with at least one piece of bi-

nary evidence based on PSI-MI experimental method codes. Binary pairs

were divided between pairs with one and with two or more pieces of evidence

(Lit-BS and Lit-BM, respectively). For benchmark experiments in Y2H,

MAPPIT, PCA, and wNAPPA, equivalent data sets were extracted similarly

in December 2010.
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Generation of the Binary Protein-Protein

Interaction Map

HI-II-14 was generated by screening all pairwise

combinations of 15,517 ORFs from hORFeome

v5.1 (Space II) as described previously (Dreze

et al., 2010). ORFs encoding first pass pairs were

identified either by Sanger sequencing or by

Stitch-seq (Yu et al., 2011). HI-II-14 was validated

by comparing a subset of 809 interactions to a

positive and a random reference set of 460 and

698 protein pairs, respectively, using MAPPIT,

PCA, and wNAPPA assays.

Interaction Perturbation by Missense

Mutations

Disease variants were obtained from the Human

GeneMutationDatabase (HGMD2009V2) (Stenson

etal., 2014) andcommonvariantswerederived from

the 1000 Genomes Project (1000 Genomes Project

Consortium, 2012). Only variants with a minor allele

frequency above 1%were considered common. All

successfully cloned disease and common variants

were systematically tested for interaction with all in-

teractors of their wild-type counterpart.

Interaction Density Imbalance

For each protein property, we ranked all proteins

and, for any property threshold, partitioned the in-

teractome space into a first region containing pairs

of proteins both above (or below) the threshold,

and a second region containing all remaining pairs.

Interaction density imbalance of a given map for a
given threshold was calculated as the fraction of PPIs observed in the first re-

gion minus the fraction of PPIs expected assuming a uniform distribution in the

space. Dense and sparse zones were defined by identifying the threshold for

which the deviation from expectation is maximal.

Measure of Functional Enrichment

For each pairwise comparison, PPI and functional maps were trimmed to pairs

where both proteins were present in both maps and restricted to Space II to
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allow comparison between PPI maps. Functional enrichment odds ratios were

calculated using Fisher’s exact tests.

GWAS Analysis

307 distinct cancer-associated SNPs were identified from 75 GWAS publica-

tions covering 10 types of cancer and 142 distinct loci were identified at a link-

age disequilibrium threshold of 0.9. For each map, we calculated the number

of loci encoding an interactor of a Cancer Census protein over the number of

loci encoding a protein in the PPI map. To assess significance, we measured

the corresponding fraction when randomly selecting for each locus the same

number of proteins than genes with products in the PPI map.

Cancer Association Scoring System

For each gene, seven features were measured. Three features represent

membership in the SB, SM, and VT lists of candidate cancer genes (‘‘guilt-

by-profiling’’ features). The four other features represent its number of interac-

tors in HI-II-14 that are present in these three lists and in the Cancer Census

list, normalized by the expected numbers in degree-controlled randomized

networks (‘‘guilt-by-association’’ features). We measured the ability of each

feature to prioritize known Cancer Census genes with separate logistic regres-

sion models. We combined all seven features in a forward stepwise logistic

regression model using the Akaike information criterion to determine the

stepwise halting. The final set of features selected was: the SB, SM, and VT

guilt-by-profiling and the Cancer Census and SB guilt-by-association features.

‘‘Receiver Operating Characteristic’’ curves were obtained by measuring at

decreasing score threshold the fraction of knownCancer Census genes recov-

ered and the corresponding fraction of proteins predicted as candidate cancer

genes.

Data Sets

For reference data sets used in this study, see Extended Experimental Proce-

dures, Section 13. All high-quality binary PPIs described in this paper can be

accessed at: http://interactome.dfci.harvard.edu/H_sapiens/.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and six tables and can be found with this article online at http://dx.doi.
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